↓ Skip to main content

The P2Y12 Receptor Antagonist Ticagrelor Reduces Lysosomal pH and Autofluorescence in Retinal Pigmented Epithelial Cells From the ABCA4-/- Mouse Model of Retinal Degeneration

Overview of attention for article published in Frontiers in Pharmacology, April 2018
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (65th percentile)
  • High Attention Score compared to outputs of the same age and source (80th percentile)

Mentioned by

twitter
7 X users

Citations

dimensions_citation
18 Dimensions

Readers on

mendeley
28 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The P2Y12 Receptor Antagonist Ticagrelor Reduces Lysosomal pH and Autofluorescence in Retinal Pigmented Epithelial Cells From the ABCA4-/- Mouse Model of Retinal Degeneration
Published in
Frontiers in Pharmacology, April 2018
DOI 10.3389/fphar.2018.00242
Pubmed ID
Authors

Wennan Lu, Néstor M. Gómez, Jason C. Lim, Sonia Guha, Ann O’Brien-Jenkins, Erin E. Coffey, Keith E. Campagno, Stuart A. McCaughey, Alan M. Laties, Leif G. Carlsson, Claire H. Mitchell

Abstract

The accumulation of partially degraded lipid waste in lysosomal-related organelles may contribute to pathology in many aging diseases. The presence of these lipofuscin granules is particularly evident in the autofluorescent lysosome-associated organelles of the retinal pigmented epithelial (RPE) cells, and may be related to early stages of age-related macular degeneration. While lysosomal enzymes degrade material optimally at acidic pH levels, lysosomal pH is elevated in RPE cells from the ABCA4-/- mouse model of Stargardt's disease, an early onset retinal degeneration. Lowering lysosomal pH through cAMP-dependent pathways decreases accumulation of autofluorescent material in RPE cells in vitro, but identification of an appropriate receptor is crucial for manipulating this pathway in vivo. As the P2Y12 receptor for ADP is coupled to the inhibitory Gi protein, we asked whether blocking the P2Y12 receptor with ticagrelor could restore lysosomal acidity and reduce autofluorescence in compromised RPE cells from ABCA4-/- mice. Oral delivery of ticagrelor giving rise to clinically relevant exposure lowered lysosomal pH in these RPE cells. Ticagrelor also partially reduced autofluorescence in the RPE cells of ABCA4-/- mice. In vitro studies in ARPE-19 cells using more specific antagonists AR-C69931 and AR-C66096 confirmed the importance of the P2Y12 receptor for lowering lysosomal pH and reducing autofluorescence. These observations identify P2Y12 receptor blockade as a potential target to lower lysosomal pH and clear lysosomal waste in RPE cells.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 7 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 28 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 28 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 25%
Student > Bachelor 4 14%
Student > Ph. D. Student 3 11%
Student > Master 3 11%
Student > Doctoral Student 1 4%
Other 3 11%
Unknown 7 25%
Readers by discipline Count As %
Medicine and Dentistry 7 25%
Biochemistry, Genetics and Molecular Biology 3 11%
Pharmacology, Toxicology and Pharmaceutical Science 3 11%
Neuroscience 3 11%
Chemistry 2 7%
Other 3 11%
Unknown 7 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 5. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 September 2018.
All research outputs
#6,449,819
of 23,043,346 outputs
Outputs from Frontiers in Pharmacology
#2,673
of 16,368 outputs
Outputs of similar age
#113,368
of 327,380 outputs
Outputs of similar age from Frontiers in Pharmacology
#78
of 393 outputs
Altmetric has tracked 23,043,346 research outputs across all sources so far. This one has received more attention than most of these and is in the 71st percentile.
So far Altmetric has tracked 16,368 research outputs from this source. They receive a mean Attention Score of 5.0. This one has done well, scoring higher than 83% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 327,380 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 65% of its contemporaries.
We're also able to compare this research output to 393 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 80% of its contemporaries.