↓ Skip to main content

My patient has received fluid. How to assess its efficacy and side effects?

Overview of attention for article published in Annals of Intensive Care, April 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (86th percentile)
  • High Attention Score compared to outputs of the same age and source (80th percentile)

Mentioned by

twitter
28 X users
facebook
2 Facebook pages

Citations

dimensions_citation
55 Dimensions

Readers on

mendeley
196 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
My patient has received fluid. How to assess its efficacy and side effects?
Published in
Annals of Intensive Care, April 2018
DOI 10.1186/s13613-018-0400-z
Pubmed ID
Authors

Xavier Monnet, Jean-Louis Teboul

Abstract

Many efforts have been made to predict, before giving fluid, whether it will increase cardiac output. Nevertheless, after fluid administration, it is also essential to assess the therapeutic efficacy and to look for possible adverse effects. Like for any drug, this step should not be missed. Basically, volume expansion is aimed at improving tissue oxygenation and organ function. To assess this final result, clinical signs are often unhelpful. The increase in urine output in case of acute kidney injury is a poor marker of the kidney perfusion improvement. Even if oxygen delivery has increased with fluid, the increase in oxygen consumption is not constant. Assessing this response needs to measure markers such as lactate, central/mixed venous oxygen saturation, or carbon dioxide-derived indices. If tissue oxygenation did not improve, one should check that cardiac output has actually increased with fluid administration. To assess this response, changes in arterial pressure are not reliable enough, and direct measurements of cardiac output are required. In cases where cardiac output did not increase with fluid, one should check that it was not due to an insufficient volume of fluid administered. For this purpose, volume markers of cardiac preload sometimes lack precision. The central venous pressure, in theory at least, should not augment to a large extent in fluid responders. The worst adverse effect of fluids is the increase in the cumulative fluid balance. In patients with acute respiratory distress syndrome (ARDS), the risk of aggravating pulmonary oedema should be systematically assessed by looking for increases in extravascular lung water, or, more indirectly, increases in central venous or pulmonary artery occlusion pressure. In ARDS patients receiving fluid, one should always keep in mind the risk of inducing/aggravating right ventricular dilation, which should be confirmed through echocardiography. The risk of increasing the intra-abdominal pressure should be carefully sought in patients at risk. Finally, fluid-induced haemodilution should not be neglected. Like for any drug which has inconsistent effectiveness and may exert significant harm, the correct fluid management should include a cautious and comprehensive assessment of fluid-induced benefits and side effects.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 28 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 196 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 196 100%

Demographic breakdown

Readers by professional status Count As %
Other 38 19%
Student > Postgraduate 31 16%
Researcher 16 8%
Student > Bachelor 13 7%
Student > Ph. D. Student 12 6%
Other 42 21%
Unknown 44 22%
Readers by discipline Count As %
Medicine and Dentistry 120 61%
Nursing and Health Professions 8 4%
Agricultural and Biological Sciences 3 2%
Social Sciences 3 2%
Computer Science 2 1%
Other 11 6%
Unknown 49 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 17. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 December 2020.
All research outputs
#2,149,522
of 25,498,750 outputs
Outputs from Annals of Intensive Care
#269
of 1,200 outputs
Outputs of similar age
#44,256
of 340,180 outputs
Outputs of similar age from Annals of Intensive Care
#7
of 30 outputs
Altmetric has tracked 25,498,750 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 91st percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,200 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 18.3. This one has done well, scoring higher than 77% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 340,180 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 86% of its contemporaries.
We're also able to compare this research output to 30 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 80% of its contemporaries.