↓ Skip to main content

Polarity-specific transcranial direct current stimulation disrupts auditory pitch learning

Overview of attention for article published in Frontiers in Neuroscience, May 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
3 X users
reddit
1 Redditor

Readers on

mendeley
88 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Polarity-specific transcranial direct current stimulation disrupts auditory pitch learning
Published in
Frontiers in Neuroscience, May 2015
DOI 10.3389/fnins.2015.00174
Pubmed ID
Authors

Reiko Matsushita, Jamila Andoh, Robert J. Zatorre

Abstract

Transcranial direct current stimulation (tDCS) is attracting increasing interest because of its potential for therapeutic use. While its effects have been investigated mainly with motor and visual tasks, less is known in the auditory domain. Past tDCS studies with auditory tasks demonstrated various behavioral outcomes, possibly due to differences in stimulation parameters, task-induced brain activity, or task measurements used in each study. Further research, using well-validated tasks is therefore required for clarification of behavioral effects of tDCS on the auditory system. Here, we took advantage of findings from a prior functional magnetic resonance imaging study, which demonstrated that the right auditory cortex is modulated during fine-grained pitch learning of microtonal melodic patterns. Targeting the right auditory cortex with tDCS using this same task thus allowed us to test the hypothesis that this region is causally involved in pitch learning. Participants in the current study were trained for 3 days while we measured pitch discrimination thresholds using microtonal melodies on each day using a psychophysical staircase procedure. We administered anodal, cathodal, or sham tDCS to three groups of participants over the right auditory cortex on the second day of training during performance of the task. Both the sham and the cathodal groups showed the expected significant learning effect (decreased pitch threshold) over the 3 days of training; in contrast we observed a blocking effect of anodal tDCS on auditory pitch learning, such that this group showed no significant change in thresholds over the 3 days. The results support a causal role for the right auditory cortex in pitch discrimination learning.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 88 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Japan 1 1%
Germany 1 1%
Unknown 86 98%

Demographic breakdown

Readers by professional status Count As %
Researcher 17 19%
Student > Ph. D. Student 13 15%
Student > Master 12 14%
Student > Bachelor 6 7%
Student > Doctoral Student 5 6%
Other 20 23%
Unknown 15 17%
Readers by discipline Count As %
Psychology 23 26%
Neuroscience 16 18%
Agricultural and Biological Sciences 5 6%
Medicine and Dentistry 5 6%
Unspecified 4 5%
Other 12 14%
Unknown 23 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 January 2016.
All research outputs
#17,286,645
of 25,374,917 outputs
Outputs from Frontiers in Neuroscience
#8,067
of 11,541 outputs
Outputs of similar age
#167,683
of 279,405 outputs
Outputs of similar age from Frontiers in Neuroscience
#91
of 115 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,541 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.9. This one is in the 24th percentile – i.e., 24% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 279,405 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 115 others from the same source and published within six weeks on either side of this one. This one is in the 18th percentile – i.e., 18% of its contemporaries scored the same or lower than it.