↓ Skip to main content

Responses to Sedimentation in Ramet Populations of the Clonal Plant Carex brevicuspis

Overview of attention for article published in Frontiers in Plant Science, April 2018
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
7 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Responses to Sedimentation in Ramet Populations of the Clonal Plant Carex brevicuspis
Published in
Frontiers in Plant Science, April 2018
DOI 10.3389/fpls.2018.00512
Pubmed ID
Authors

Bai-Han Pan, Yong-Hong Xie, Feng Li, Ye-Ai Zou, Zheng-Miao Deng

Abstract

In aquatic ecosystems, sedimentation is an important factor that affects plant growth, mainly due to sediment depth. Clonal morphological plasticity is an effective strategy in clonal plants for acclimatization to sediment burial. To date, few studies have examined growth responses to sedimentation on the clonal plants at the ramet population level. This study aimed to explore the interactive effects of population size and burial depth on growth and clonal morphology of Carex brevicuspis. Three population sizes (2, 8, and 32 ramets) and 3 burial depths (0 cm, 5 cm, and 10 cm) were used in this experiment. Under shallow (5 cm) and deep (10 cm) burial conditions, biomass accumulation and relative growth rate (RGR) were lower than in the no burial treatment (P < 0.05). RGR of the small and medium populations was especially high compared to the large populations (P < 0.05). Biomass allocation was higher to belowground parts than aboveground parts, except for the small populations in the 5 cm burial treatments. Both shallow burial and smaller populations led to more biomass being allocated to aboveground parts. Deep burial elongated the first order spacer more than shallow burial, and sedimentation had negative effects on the second order spacer length. The number of new ramets did not decrease in the 5 or 10 cm burial treatments compared to the unburial treatment, and larger populations usually had more ramets than smaller ones; the proportion of clumping ramets was higher than the proportion of spreading ramets, and deeper burial and smaller populations led to higher proportions of spreading ramets. These results indicated that the growth of C. brevicuspis was limited by sediment burial at the ramet population level. Smaller populations enable C. brevicuspis to adjust its escape response to burial stress, may allow this species to effectively survive and widely distribute in Dongting Lake wetland.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 7 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 7 100%

Demographic breakdown

Readers by professional status Count As %
Student > Doctoral Student 2 29%
Lecturer 1 14%
Student > Bachelor 1 14%
Student > Ph. D. Student 1 14%
Professor > Associate Professor 1 14%
Other 0 0%
Unknown 1 14%
Readers by discipline Count As %
Environmental Science 1 14%
Biochemistry, Genetics and Molecular Biology 1 14%
Agricultural and Biological Sciences 1 14%
Social Sciences 1 14%
Unknown 3 43%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 May 2018.
All research outputs
#18,619,411
of 23,065,445 outputs
Outputs from Frontiers in Plant Science
#14,059
of 20,648 outputs
Outputs of similar age
#231,162
of 296,890 outputs
Outputs of similar age from Frontiers in Plant Science
#339
of 429 outputs
Altmetric has tracked 23,065,445 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,648 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 20th percentile – i.e., 20% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 296,890 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 11th percentile – i.e., 11% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 429 others from the same source and published within six weeks on either side of this one. This one is in the 13th percentile – i.e., 13% of its contemporaries scored the same or lower than it.