↓ Skip to main content

Quantitative Analysis of the Spatial Organization of Synaptic Inputs on the Postsynaptic Dendrite

Overview of attention for article published in Frontiers in Neural Circuits, May 2018
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
1 Dimensions

Readers on

mendeley
18 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Quantitative Analysis of the Spatial Organization of Synaptic Inputs on the Postsynaptic Dendrite
Published in
Frontiers in Neural Circuits, May 2018
DOI 10.3389/fncir.2018.00039
Pubmed ID
Authors

Volker Scheuss

Abstract

The spatial organization of synaptic inputs on the dendritic tree of cortical neurons is considered to play an important role in the dendritic integration of synaptic activity. Active electrical properties of dendrites and mechanisms of dendritic integration have been studied for a long time. New technological developments are now enabling the characterization of the spatial organization of synaptic inputs on dendrites. However, quantitative methods for the analysis of such data are lacking. In order to place cluster parameters into the framework of dendritic integration and synaptic summation, these parameters need to be assessed rigorously in a quantitative manner. Here I present an approach for the analysis of synaptic input clusters on the dendritic tree that is based on combinatorial analysis of the likelihoods to observe specific input arrangements. This approach is superior to the commonly applied analysis of nearest neighbor distances between synaptic inputs comparing their distribution to simulations with random reshuffling or bootstrapping. First, the new approach yields exact likelihood values rather than approximate numbers obtained from simulations. Second and more importantly, the new approach identifies individual clusters and thereby allows to quantify and characterize individual cluster properties.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 18 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 18 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 33%
Researcher 3 17%
Professor > Associate Professor 2 11%
Professor 1 6%
Unspecified 1 6%
Other 2 11%
Unknown 3 17%
Readers by discipline Count As %
Neuroscience 6 33%
Agricultural and Biological Sciences 5 28%
Unspecified 1 6%
Social Sciences 1 6%
Earth and Planetary Sciences 1 6%
Other 0 0%
Unknown 4 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 June 2018.
All research outputs
#18,632,069
of 23,081,466 outputs
Outputs from Frontiers in Neural Circuits
#943
of 1,222 outputs
Outputs of similar age
#255,311
of 330,256 outputs
Outputs of similar age from Frontiers in Neural Circuits
#20
of 23 outputs
Altmetric has tracked 23,081,466 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,222 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.8. This one is in the 15th percentile – i.e., 15% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 330,256 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 23 others from the same source and published within six weeks on either side of this one. This one is in the 4th percentile – i.e., 4% of its contemporaries scored the same or lower than it.