↓ Skip to main content

Exosomes in the Thymus: Antigen Transfer and Vesicles

Overview of attention for article published in Frontiers in immunology, July 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
19 Dimensions

Readers on

mendeley
52 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Exosomes in the Thymus: Antigen Transfer and Vesicles
Published in
Frontiers in immunology, July 2015
DOI 10.3389/fimmu.2015.00366
Pubmed ID
Authors

Gabriel Skogberg, Esbjörn Telemo, Olov Ekwall

Abstract

Thymocytes go through several steps of maturation and selection in the thymus in order to form a functional pool of effector T-cells and regulatory T-cells in the periphery. Close interactions between thymocytes, thymic epithelial cells, and dendritic cells are of vital importance for the maturation, selection, and lineage decision of the thymocytes. One important question that is still unanswered is how a relatively small epithelial cell population can present a vast array of self-antigens to the manifold larger population of developing thymocytes in this selection process. Here, we review and discuss the literature concerning antigen transfer from epithelial cells with a focus on exosomes. Exosomes are nano-sized vesicles released from a cell into the extracellular space. These vesicles can carry proteins, microRNAs, and mRNAs between cells and are thus able to participate in intercellular communication. Exosomes have been shown to be produced by thymic epithelial cells and to carry tissue-restricted antigens and MHC molecules, which may enable them to participate in the thymocyte selection process.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 52 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 52 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 15 29%
Student > Ph. D. Student 12 23%
Student > Master 5 10%
Student > Bachelor 5 10%
Professor > Associate Professor 4 8%
Other 10 19%
Unknown 1 2%
Readers by discipline Count As %
Agricultural and Biological Sciences 20 38%
Biochemistry, Genetics and Molecular Biology 9 17%
Immunology and Microbiology 9 17%
Medicine and Dentistry 4 8%
Pharmacology, Toxicology and Pharmaceutical Science 3 6%
Other 3 6%
Unknown 4 8%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 August 2015.
All research outputs
#16,048,009
of 25,374,647 outputs
Outputs from Frontiers in immunology
#16,705
of 31,520 outputs
Outputs of similar age
#145,468
of 275,577 outputs
Outputs of similar age from Frontiers in immunology
#81
of 164 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 34th percentile – i.e., 34% of other outputs scored the same or lower than it.
So far Altmetric has tracked 31,520 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.4. This one is in the 42nd percentile – i.e., 42% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 275,577 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 164 others from the same source and published within six weeks on either side of this one. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.