↓ Skip to main content

Persistent Replication of a Chikungunya Virus Replicon in Human Cells Is Associated with Presence of Stable Cytoplasmic Granules Containing Nonstructural Protein 3

Overview of attention for article published in Journal of Virology, July 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (72nd percentile)
  • Good Attention Score compared to outputs of the same age and source (70th percentile)

Mentioned by

twitter
12 X users

Citations

dimensions_citation
28 Dimensions

Readers on

mendeley
80 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Persistent Replication of a Chikungunya Virus Replicon in Human Cells Is Associated with Presence of Stable Cytoplasmic Granules Containing Nonstructural Protein 3
Published in
Journal of Virology, July 2018
DOI 10.1128/jvi.00477-18
Pubmed ID
Authors

Roland Remenyi, Yanni Gao, Ruth E. Hughes, Alistair Curd, Carsten Zothner, Michelle Peckham, Andres Merits, Mark Harris

Abstract

Chikungunya virus (CHIKV), a mosquito-borne human pathogen, causes a disabling disease characterized by severe joint pain that can persist for weeks, months or even years in patients. The non-structural protein 3 (nsP3) plays essential roles during acute infection, but little is known about the function of nsP3 during chronic disease. Here, we used sub-diffraction multi-color microscopy for spatial and temporal analysis of CHIKV nsP3 within human cells that persistently replicate replicon RNA. Round cytoplasmic granules of various sizes (i) contained nsP3 and stress granule assembly factors 1 and 2 (G3BP1/2); (ii) were next to double-stranded RNA foci and nsP1-positive structures; and (iii) were close to the nuclear membrane and the nuclear pore complex protein Nup98. Analysis of protein turnover and mobility by live-cell microscopy revealed that granules could persist for hours to days, accumulated newly synthesized protein, and moved through the cytoplasm at varying speeds. Granules also had a static internal architecture and were stable in cell lysates. Refractory cells that had cleared the non-cytotoxic replicon regained the ability to respond to arsenite-induced stress. In summary, nsP3 can form uniquely stable granular structures that persist long-term within the host cell. This continued presence of viral and cellular protein-complexes has implications for the study of the pathogenic consequences of lingering CHIKV infection and the development of strategies to mitigate the burden of chronic musculoskeletal disease brought about by a medically important arthropod-borne virus (arbovirus).ImportanceChikungunya virus (CHIKV) is a re-emerging alphavirus transmitted by mosquitos and causes transient sickness but also chronic disease affecting muscles and joints. No approved vaccines or antivirals are available. Thus, a better understanding of the viral life cycle and the role of viral proteins can aid in identifying new therapeutic targets. Advances in microscopy and development of non-cytotoxic replicons (Utt, Das, Varjak, Lulla, Lulla, Merits, J Virol 89:3145-62, 2015, doi:10.1128/JVI.03213-14) have allowed researchers to study viral proteins within controlled laboratory environments over extended durations. Here we established human cells that stably replicate replicon RNA and express tagged non-structural protein 3. The ability to track nsP3 within the host cell and during persistent replication can benefit fundamental research efforts to better understand long-term consequences of the persistence of viral protein complexes and thereby provide the foundation for new therapeutic targets to control CHIKV infection and treat chronic disease symptoms.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 12 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 80 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 80 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 18 23%
Researcher 11 14%
Student > Bachelor 9 11%
Student > Doctoral Student 7 9%
Student > Master 7 9%
Other 7 9%
Unknown 21 26%
Readers by discipline Count As %
Agricultural and Biological Sciences 18 23%
Biochemistry, Genetics and Molecular Biology 17 21%
Immunology and Microbiology 10 13%
Medicine and Dentistry 6 8%
Chemistry 2 3%
Other 3 4%
Unknown 24 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 July 2019.
All research outputs
#5,296,295
of 25,394,764 outputs
Outputs from Journal of Virology
#5,419
of 25,708 outputs
Outputs of similar age
#93,097
of 340,798 outputs
Outputs of similar age from Journal of Virology
#60
of 201 outputs
Altmetric has tracked 25,394,764 research outputs across all sources so far. Compared to these this one has done well and is in the 79th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 25,708 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.5. This one has done well, scoring higher than 78% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 340,798 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 72% of its contemporaries.
We're also able to compare this research output to 201 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 70% of its contemporaries.