↓ Skip to main content

Activity-Dependent Pre-miR-134 Dendritic Localization Is Required for Hippocampal Neuron Dendritogenesis

Overview of attention for article published in Frontiers in Molecular Neuroscience, June 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
23 Dimensions

Readers on

mendeley
32 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Activity-Dependent Pre-miR-134 Dendritic Localization Is Required for Hippocampal Neuron Dendritogenesis
Published in
Frontiers in Molecular Neuroscience, June 2018
DOI 10.3389/fnmol.2018.00171
Pubmed ID
Authors

Federico Zampa, Silvia Bicker, Gerhard Schratt

Abstract

microRNAs (miRNAs) have emerged as critical regulators of neuronal dendrite development. Specific precursor (pre-)miRNAs are actively transported to dendrites, but whether this process is regulated by neuronal activity and involved in activity-dependent dendritogenesis is unknown. Here we show that BDNF, a neurotrophin that is released in response to increased neuronal activity, promotes dendritic accumulation of pre-miR-134. Dendritic accumulation, but not transcription of pre-miR-134, is abrogated by treatment of neurons with the NMDA receptor (NMDAR) antagonist APV. Furthermore, APV interferes with BDNF-mediated repression of the known miR-134 target Pumilio 2 (Pum2) in a miR-134 binding site-specific manner. At the functional level, both APV treatment and knockdown of the pre-miR-134 transport protein DHX36 antagonize BDNF-induced dendritogenesis. These effects are likely mediated by reduced dendritic miR-134 activity, since both transfection of a synthetic miR-134 duplex or of a dendritically targeted pre-miR-134-181a chimera rescues BDNF-dependent dendritogenesis in the presence of APV. In conclusion, we have identified a novel NMDAR-dependent mechanism involved in the activity-dependent control of miRNA function during neuronal development.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 32 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 32 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 22%
Researcher 4 13%
Student > Bachelor 3 9%
Student > Doctoral Student 2 6%
Student > Master 2 6%
Other 5 16%
Unknown 9 28%
Readers by discipline Count As %
Neuroscience 11 34%
Biochemistry, Genetics and Molecular Biology 5 16%
Agricultural and Biological Sciences 3 9%
Medicine and Dentistry 3 9%
Unspecified 1 3%
Other 1 3%
Unknown 8 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 June 2018.
All research outputs
#20,522,137
of 23,090,520 outputs
Outputs from Frontiers in Molecular Neuroscience
#2,506
of 2,930 outputs
Outputs of similar age
#287,865
of 328,268 outputs
Outputs of similar age from Frontiers in Molecular Neuroscience
#98
of 110 outputs
Altmetric has tracked 23,090,520 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,930 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 328,268 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 110 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.