↓ Skip to main content

A new search for thermotolerant yeasts, its characterization and optimization using response surface methodology for ethanol production

Overview of attention for article published in Frontiers in Microbiology, September 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Readers on

mendeley
96 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A new search for thermotolerant yeasts, its characterization and optimization using response surface methodology for ethanol production
Published in
Frontiers in Microbiology, September 2015
DOI 10.3389/fmicb.2015.00889
Pubmed ID
Authors

Richa Arora, Shuvashish Behera, Nilesh K. Sharma, Sachin Kumar

Abstract

The progressive rise in energy crisis followed by green house gas (GHG) emissions is serving as the driving force for bioethanol production from renewable resources. Current bioethanol research focuses on lignocellulosic feedstocks as these are abundantly available, renewable, sustainable and exhibit no competition between the crops for food and fuel. However, the technologies in use have some drawbacks including incapability of pentose fermentation, reduced tolerance to products formed, costly processes, etc. Therefore, the present study was carried out with the objective of isolating hexose and pentose fermenting thermophilic/thermotolerant ethanologens with acceptable product yield. Two thermotolerant isolates, NIRE-K1 and NIRE-K3 were screened for fermenting both glucose and xylose and identified as Kluyveromyces marxianus NIRE-K1 and K. marxianus NIRE-K3. After optimization using Face-centered Central Composite Design (FCCD), the growth parameters like temperature and pH were found to be 45.17°C and 5.49, respectively for K. marxianus NIRE-K1 and 45.41°C and 5.24, respectively for K. marxianus NIRE-K3. Further, batch fermentations were carried out under optimized conditions, where K. marxianus NIRE-K3 was found to be superior over K. marxianus NIRE-K1. Ethanol yield (Y x∕s ), sugar to ethanol conversion rate (%), microbial biomass concentration (X) and volumetric product productivity (Q p ) obtained by K. marxianus NIRE-K3 were found to be 9.3, 9.55, 14.63, and 31.94% higher than that of K. marxianus NIRE-K1, respectively. This study revealed the promising potential of both the screened thermotolerant isolates for bioethanol production.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 96 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Thailand 2 2%
Brazil 1 1%
Unknown 93 97%

Demographic breakdown

Readers by professional status Count As %
Researcher 15 16%
Student > Ph. D. Student 13 14%
Student > Master 10 10%
Other 8 8%
Student > Doctoral Student 7 7%
Other 21 22%
Unknown 22 23%
Readers by discipline Count As %
Agricultural and Biological Sciences 34 35%
Biochemistry, Genetics and Molecular Biology 10 10%
Engineering 6 6%
Chemical Engineering 5 5%
Immunology and Microbiology 4 4%
Other 14 15%
Unknown 23 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 September 2015.
All research outputs
#15,330,390
of 23,577,654 outputs
Outputs from Frontiers in Microbiology
#14,470
of 26,073 outputs
Outputs of similar age
#149,626
of 268,204 outputs
Outputs of similar age from Frontiers in Microbiology
#210
of 401 outputs
Altmetric has tracked 23,577,654 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 26,073 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.4. This one is in the 39th percentile – i.e., 39% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 268,204 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 401 others from the same source and published within six weeks on either side of this one. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.