↓ Skip to main content

Laboratory-Based and Point-of-Care Testing for MSSA/MRSA Detection in the Age of Whole Genome Sequencing

Overview of attention for article published in Frontiers in Microbiology, June 2018
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
34 Dimensions

Readers on

mendeley
86 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Laboratory-Based and Point-of-Care Testing for MSSA/MRSA Detection in the Age of Whole Genome Sequencing
Published in
Frontiers in Microbiology, June 2018
DOI 10.3389/fmicb.2018.01437
Pubmed ID
Authors

Alex van Belkum, Olivier Rochas

Abstract

Staphylococcus aureus is an opportunistic pathogen of animals and humans that is capable of both colonizing and infecting its eukaryotic host. It is frequently detected in the clinical microbiology routine laboratory. S. aureus is capable of acquiring antibiotic resistance traits with ease and, given its rapid global dissemination, resistance to meticillin in S. aureus has received extensive coverage in the popular and medical press. The detection of meticillin-resistant versus meticillin-susceptible S. aureus (MRSA and MSSA) is of significant clinical importance. Detection of meticillin resistance is relatively straightforward since it is defined by a single determinant, penicillin-binding protein 2a', which exists in a limited number of genetic variants carried on various Staphylococcal Cassette Chromosomes mec. Diagnosis of MRSA and MSSA has evolved significantly over the past decades and there has been a strong shift from culture-based, phenotypic methods toward molecular detection, especially given the close correlation between the presence of the mec genes and phenotypic resistance. This brief review summarizes the current state of affairs concerning the mostly polymerase chain reaction-mediated detection of MRSA and MSSA in either the classical laboratory setting or at the point of care. The potential diagnostic impact of the currently emerging whole genome sequencing (WGS) technology will be discussed against a background of diagnostic, surveillance, and infection control parameters. Adequate detection of MSSA and MRSA is at the basis of any subsequent, more generic antibiotic susceptibility testing, epidemiological characterization, and detection of virulence factors, whether performed with classical technology or WGS analyses.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 86 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 86 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 15 17%
Student > Master 12 14%
Student > Bachelor 12 14%
Student > Ph. D. Student 7 8%
Student > Doctoral Student 7 8%
Other 14 16%
Unknown 19 22%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 20 23%
Agricultural and Biological Sciences 11 13%
Immunology and Microbiology 8 9%
Medicine and Dentistry 7 8%
Chemistry 4 5%
Other 15 17%
Unknown 21 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 July 2018.
All research outputs
#18,643,992
of 23,096,849 outputs
Outputs from Frontiers in Microbiology
#19,668
of 25,270 outputs
Outputs of similar age
#254,374
of 329,244 outputs
Outputs of similar age from Frontiers in Microbiology
#531
of 717 outputs
Altmetric has tracked 23,096,849 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 25,270 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.4. This one is in the 9th percentile – i.e., 9% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,244 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 717 others from the same source and published within six weeks on either side of this one. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.