↓ Skip to main content

A complex protein derivative acts as biogenic elicitor of grapevine resistance against powdery mildew under field conditions

Overview of attention for article published in Frontiers in Plant Science, September 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (70th percentile)

Mentioned by

twitter
3 X users

Citations

dimensions_citation
20 Dimensions

Readers on

mendeley
75 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A complex protein derivative acts as biogenic elicitor of grapevine resistance against powdery mildew under field conditions
Published in
Frontiers in Plant Science, September 2015
DOI 10.3389/fpls.2015.00715
Pubmed ID
Authors

Andrea Nesler, Michele Perazzolli, Gerardo Puopolo, Oscar Giovannini, Yigal Elad, Ilaria Pertot

Abstract

Powdery mildew caused by Erysiphe necator is one of the most important grapevine diseases in several viticulture areas, and high fungicide input is required to control it. However, numerous synthetic chemical pesticides are under scrutiny due to concerns about their impact on human health and the environment. Biopesticides, such as biogenic elicitors, are a promising alternative to chemical fungicides. Although several studies have reported on effective elicitors against grapevine diseases, their efficacy under field conditions has not been investigated extensively or has occurred at rather limited levels. Our goal was to examine the efficacy of a protein-based composition, namely nutrient broth (NB), against powdery mildew under field conditions and to characterize its mechanism of action. Weekly treatments with NB was highly effective in controlling powdery mildew on grapevine across seasons with different disease pressures. The level of disease control achieved with NB was comparable to standard fungicide treatments both on leaves and bunches across three different years. NB has no direct toxic effect on the germination of E. necator conidia, and it activates plant resistance with both systemic and translaminar effect in experiments with artificial inoculation under controlled conditions. NB induced the expression of defense-related genes in grapevine, demonstrating stimulation of plant defense mechanisms, prior to and in the early stages of pathogen infection. NB is a natural derivative from meat and yeast, substances that tend not to raise concerns about toxicological and ecotoxicological properties. NB represents a valid control tool for integrated plant protection programs against powdery mildew, to reduce the use of synthetic pesticides on grapevine.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 75 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 1%
Unknown 74 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 17%
Researcher 11 15%
Student > Master 11 15%
Student > Bachelor 9 12%
Student > Postgraduate 5 7%
Other 10 13%
Unknown 16 21%
Readers by discipline Count As %
Agricultural and Biological Sciences 43 57%
Biochemistry, Genetics and Molecular Biology 5 7%
Environmental Science 2 3%
Earth and Planetary Sciences 2 3%
Engineering 2 3%
Other 3 4%
Unknown 18 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 November 2015.
All research outputs
#14,434,918
of 23,576,969 outputs
Outputs from Frontiers in Plant Science
#7,710
of 21,663 outputs
Outputs of similar age
#138,127
of 273,940 outputs
Outputs of similar age from Frontiers in Plant Science
#92
of 340 outputs
Altmetric has tracked 23,576,969 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 21,663 research outputs from this source. They receive a mean Attention Score of 3.9. This one has gotten more attention than average, scoring higher than 61% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 273,940 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 340 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 70% of its contemporaries.