↓ Skip to main content

Technoeconomic Modeling of Plant-Based Griffithsin Manufacturing

Overview of attention for article published in Frontiers in Bioengineering and Biotechnology, July 2018
Altmetric Badge

Mentioned by

twitter
2 X users
facebook
1 Facebook page

Readers on

mendeley
63 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Technoeconomic Modeling of Plant-Based Griffithsin Manufacturing
Published in
Frontiers in Bioengineering and Biotechnology, July 2018
DOI 10.3389/fbioe.2018.00102
Pubmed ID
Authors

Aatif Alam, Linda Jiang, Gregory A. Kittleson, Kenneth D. Steadman, Somen Nandi, Joshua L. Fuqua, Kenneth E. Palmer, Daniel Tusé, Karen A. McDonald

Abstract

Griffithsin is a marine algal lectin that exhibits broad-spectrum antiviral activity by binding oligomannose glycans on viral envelope glycoproteins, including those found in HIV-1, HSV-2, SARS, HCV and other enveloped viruses. An efficient, scalable and cost-effective manufacturing process for Griffithsin is essential for the adoption of this drug in human antiviral prophylaxis and therapy, particularly in cost-sensitive indications such as topical microbicides for HIV-1 prevention. The production of certain classes of recombinant biologics in plants can offer scalability, cost and environmental impact advantages over traditional biomanufacturing platforms. Previously, we showed the technical viability of producing recombinant Griffithsin in plants. In this study, we conducted a technoeconomic analysis (TEA) of plant-produced Griffithsin manufactured at commercial launch volumes for use in HIV microbicides. Data derived from multiple non-sequential manufacturing batches conducted at pilot scale and existing facility designs were used to build a technoeconomic model using SuperPro Designer® modeling software. With an assumed commercial launch volume of 20 kg Griffithsin/year for 6.7 million doses of Griffithsin microbicide at 3 mg/dose, a transient vector expression yield of 0.52 g Griffithsin/kg leaf biomass, recovery efficiency of 70%, and purity of >99%, we calculated a manufacturing cost for the drug substance of $0.32/dose and estimated a bulk product cost of $0.38/dose assuming a 20% net fee for a contract manufacturing organization (CMO). This is the first report modeling the manufacturing economics of Griffithsin. The process analyzed is readily scalable and subject to efficiency improvements and could provide the needed market volumes of the lectin within an acceptable range of costs, even for cost-constrained products such as microbicides. The manufacturing process was also assessed for environmental, health and safety impact and found to have a highly favorable environmental output index with negligible risks to health and safety. The results of this study help validate the plant-based manufacturing platform and should assist in selecting preferred indications for Griffithsin as a novel drug.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 63 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 63 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 14 22%
Student > Bachelor 8 13%
Student > Master 8 13%
Researcher 6 10%
Lecturer 2 3%
Other 5 8%
Unknown 20 32%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 13 21%
Agricultural and Biological Sciences 8 13%
Chemical Engineering 7 11%
Engineering 3 5%
Nursing and Health Professions 1 2%
Other 8 13%
Unknown 23 37%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 February 2020.
All research outputs
#17,985,001
of 23,096,849 outputs
Outputs from Frontiers in Bioengineering and Biotechnology
#2,946
of 6,783 outputs
Outputs of similar age
#237,313
of 329,806 outputs
Outputs of similar age from Frontiers in Bioengineering and Biotechnology
#37
of 46 outputs
Altmetric has tracked 23,096,849 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 6,783 research outputs from this source. They receive a mean Attention Score of 3.4. This one is in the 49th percentile – i.e., 49% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,806 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 46 others from the same source and published within six weeks on either side of this one. This one is in the 10th percentile – i.e., 10% of its contemporaries scored the same or lower than it.