↓ Skip to main content

Fumarase: From the TCA Cycle to DNA Damage Response and Tumor Suppression

Overview of attention for article published in Frontiers in Molecular Biosciences, July 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (71st percentile)
  • Good Attention Score compared to outputs of the same age and source (68th percentile)

Mentioned by

twitter
12 X users
facebook
2 Facebook pages

Readers on

mendeley
91 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Fumarase: From the TCA Cycle to DNA Damage Response and Tumor Suppression
Published in
Frontiers in Molecular Biosciences, July 2018
DOI 10.3389/fmolb.2018.00068
Pubmed ID
Authors

Michael Leshets, Yardena B. H. Silas, Norbert Lehming, Ophry Pines

Abstract

Fumarase is an enzyme of the tricarboxylic acid (TCA) cycle in mitochondria, but in recent years, it has emerged as a participant in the response to DNA double strand breaks (DSBs) in the nucleus. In fact, this enzyme is dual-targeted and can be also readily detected in the mitochondrial and cytosolic/nuclear compartments of all the eukaryotic organisms examined. Intriguingly, this evolutionary conserved cytosolic population of fumarase, its enzymatic activity and the associated metabolite fumarate, are required for the cellular DNA damage response (DDR) to double-strand breaks. Here we review findings from yeast and human cells regarding how fumarase and fumarate may precisely participate in the DNA damage response. In yeast, cytosolic fumarase is involved in the homologous recombination (HR) repair pathway, through its function in the DSB resection process. One target of this regulation is the resection enzyme Sae2. In human cells, fumarase is involved in the non-homologous end joining (NHEJ) repair pathway. Fumarase is phosphorylated by the DNA-dependent protein kinase (DNA-PK) complex, which induces the recruitment of fumarase to the DSB and local generation of fumarate. Fumarate inhibits the lysine demethylase 2B (KDM2B), thereby facilitating the dimethylation of histone H3, which leads to the repair of the break by the NHEJ pathway. Finally, we discuss the question how fumarase may function as a tumor suppressor via its metabolite substrate fumarate. We offer a number of models which can explain an apparent contradiction regarding how fumarate absence/accumulation, as a function of subcellular location and stage can determine tumorigenesis. Fumarate, on the one hand, a positive regulator of genome stability (its absence supports genome instability and tumorigenesis) and, on the other hand, its accumulation drives angiogenesis and proliferation (thereby supporting tumor establishment).

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 12 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 91 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 91 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 16 18%
Student > Ph. D. Student 14 15%
Researcher 8 9%
Student > Master 8 9%
Professor > Associate Professor 4 4%
Other 12 13%
Unknown 29 32%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 30 33%
Agricultural and Biological Sciences 11 12%
Medicine and Dentistry 5 5%
Pharmacology, Toxicology and Pharmaceutical Science 4 4%
Immunology and Microbiology 4 4%
Other 8 9%
Unknown 29 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 November 2023.
All research outputs
#5,606,072
of 25,931,626 outputs
Outputs from Frontiers in Molecular Biosciences
#568
of 4,773 outputs
Outputs of similar age
#96,519
of 343,234 outputs
Outputs of similar age from Frontiers in Molecular Biosciences
#9
of 29 outputs
Altmetric has tracked 25,931,626 research outputs across all sources so far. Compared to these this one has done well and is in the 75th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 4,773 research outputs from this source. They receive a mean Attention Score of 3.6. This one has done well, scoring higher than 87% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 343,234 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 71% of its contemporaries.
We're also able to compare this research output to 29 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 68% of its contemporaries.