↓ Skip to main content

HEMA but not TEGDMA induces autophagy in human gingival fibroblasts

Overview of attention for article published in Frontiers in Physiology, October 2015
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
18 Dimensions

Readers on

mendeley
19 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
HEMA but not TEGDMA induces autophagy in human gingival fibroblasts
Published in
Frontiers in Physiology, October 2015
DOI 10.3389/fphys.2015.00275
Pubmed ID
Authors

Gabriella Teti, Giovanna Orsini, Viviana Salvatore, Stefano Focaroli, Maria C. Mazzotti, Alessandra Ruggeri, Monica Mattioli-Belmonte, Mirella Falconi

Abstract

Polymerized resin-based materials are successfully used in restorative dentistry. Despite their growing popularity, one drawback is the release of monomers from the polymerized matrix due to an incomplete polymerization or degradation processes. Released monomers are responsible for several adverse effects in the surrounding biological tissues, inducing high levels of oxidative stress. Reactive oxygen species are important signaling molecules that regulate many signal-trasduction pathways and play critical roles in cell survival, death, and immune defenses. Reactive oxygen species were recently shown to activate autophagy as a mechanism of cell survival and cell death. Although the toxicity induced by dental resin monomers is widely studied, the cellular mechanisms underlying these phenomena are still unknown. The aim of the study was to investigate the behavior of human gingival cells exposed to 2-hydroxy-ethyl methacrylate (HEMA) and triethylene glycol dimethacrylate (TEGDMA) to better elucidate the mechanisms of cell survival and cell death induced by resin monomers. Primary culture of human gingival cells were exposed to 3 mmol/L of HEMA or 3 mmol/L of TEGDMA for 24, 48, and 72 h. Morphological investigations were performed by transmission electron microscopy to analyze the ultrastructure of cells exposed to the monomers. The expression of protein markers for apoptosis (caspase - 3 and PARP) and autophagy (beclin - 1 and LC3B I/II) were analyzed by western blot to investigate the influence of dental resin monomers on mechanisms underlying cell death. Results showed that HEMA treatment clearly induced autophagy followed by apoptosis while the lack of any sign of autophagy activation is observed in HGFs exposed to TEGDMA. These data indicate that cells respond to monomer-induced stress by the differential induction of adaptive mechanisms to maintain cellular homeostasis.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 19 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 19 100%

Demographic breakdown

Readers by professional status Count As %
Student > Postgraduate 3 16%
Student > Ph. D. Student 2 11%
Researcher 2 11%
Student > Master 2 11%
Other 1 5%
Other 4 21%
Unknown 5 26%
Readers by discipline Count As %
Medicine and Dentistry 8 42%
Environmental Science 2 11%
Agricultural and Biological Sciences 1 5%
Chemical Engineering 1 5%
Social Sciences 1 5%
Other 1 5%
Unknown 5 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 October 2015.
All research outputs
#18,428,159
of 22,829,683 outputs
Outputs from Frontiers in Physiology
#8,125
of 13,603 outputs
Outputs of similar age
#198,033
of 275,403 outputs
Outputs of similar age from Frontiers in Physiology
#58
of 93 outputs
Altmetric has tracked 22,829,683 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,603 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one is in the 31st percentile – i.e., 31% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 275,403 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 93 others from the same source and published within six weeks on either side of this one. This one is in the 29th percentile – i.e., 29% of its contemporaries scored the same or lower than it.