↓ Skip to main content

Integrated Serum and Fecal Metabolomics Study of Collagen-Induced Arthritis Rats and the Therapeutic Effects of the Zushima Tablet

Overview of attention for article published in Frontiers in Pharmacology, August 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (62nd percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
40 Dimensions

Readers on

mendeley
44 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Integrated Serum and Fecal Metabolomics Study of Collagen-Induced Arthritis Rats and the Therapeutic Effects of the Zushima Tablet
Published in
Frontiers in Pharmacology, August 2018
DOI 10.3389/fphar.2018.00891
Pubmed ID
Authors

Jinjun Shan, Linxiu Peng, Wenjuan Qian, Tong Xie, An Kang, Bei Gao, Liuqing Di

Abstract

The Zushima tablet (ZT) has been used for decades in the clinical treatment of rheumatoid arthritis (RA) in China. However, its therapeutic mechanism is unclear. In this study, we aimed to explore the distinctive metabolic patterns in collagen-induced arthritis (CIA) rats and evaluate the therapeutic effects of ZT on RA using untargeted serum and fecal metabolomics approaches based on gas chromatography coupled with mass spectrometry. Body weight, hind paw swelling, TNF-α and IL-1β levels, arthritis scores, and histopathological parameters were assessed. In the metabolomics study, 31 altered metabolites in the serum and 30 in the feces were identified by comparing the model with the control group using statistical processing. These altered metabolites revealed that the tricarboxylic acid cycle, glycolysis metabolism, fatty acid metabolism, and purine metabolism were disturbed in CIA rats, and most of these altered metabolites including l-isoleucine, l-aspartic acid, pyruvic acid, cholic acid, and hypoxanthine, were rectified by ZT. Furthermore, short-chain fatty acids in feces were quantitatively determined, and the results showed that ZT could regulate the levels of propionate, butyrate, and valerate in CIA rats. Then, gut microbiota were analyzed by 16S rRNA analysis. Our results showed that Firmicutes and Bacteroidetes were the most abundant bacteria in rats. The levels of 19 types of bacteria at the family level were altered in RA rats, and most of them could be regulated by ZT. This study demonstrated that metabolomics analysis is a powerful tool for providing novel insight into RA and for elucidating the potential mechanism of ZT.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 44 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 44 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 9 20%
Student > Ph. D. Student 7 16%
Student > Master 6 14%
Student > Postgraduate 4 9%
Student > Doctoral Student 3 7%
Other 6 14%
Unknown 9 20%
Readers by discipline Count As %
Medicine and Dentistry 6 14%
Pharmacology, Toxicology and Pharmaceutical Science 6 14%
Biochemistry, Genetics and Molecular Biology 6 14%
Agricultural and Biological Sciences 3 7%
Immunology and Microbiology 3 7%
Other 7 16%
Unknown 13 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 September 2018.
All research outputs
#15,015,838
of 23,098,660 outputs
Outputs from Frontiers in Pharmacology
#5,343
of 16,456 outputs
Outputs of similar age
#198,627
of 331,093 outputs
Outputs of similar age from Frontiers in Pharmacology
#129
of 391 outputs
Altmetric has tracked 23,098,660 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 16,456 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.0. This one has gotten more attention than average, scoring higher than 60% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 331,093 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 391 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 62% of its contemporaries.