↓ Skip to main content

Extracting extensor digitorum communis activation patterns using high-density surface electromyography

Overview of attention for article published in Frontiers in Physiology, October 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
55 Dimensions

Readers on

mendeley
91 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Extracting extensor digitorum communis activation patterns using high-density surface electromyography
Published in
Frontiers in Physiology, October 2015
DOI 10.3389/fphys.2015.00279
Pubmed ID
Authors

Xiaogang Hu, Nina L. Suresh, Cindy Xue, William Z. Rymer

Abstract

The extensor digitorum communis muscle plays an important role in hand dexterity during object manipulations. This multi-tendinous muscle is believed to be controlled through separate motoneuron pools, thereby forming different compartments that control individual digits. However, due to the complex anatomical variations across individuals and the flexibility of neural control strategies, the spatial activation patterns of the extensor digitorum communis compartments during individual finger extension have not been fully tracked under different task conditions. The objective of this study was to quantify the global spatial activation patterns of the extensor digitorum communis using high-density (7 × 9) surface electromyogram (EMG) recordings. The muscle activation map (based on the root mean square of the EMG) was constructed when subjects performed individual four finger extensions at the metacarpophalangeal joint, at different effort levels and under different finger constraints (static and dynamic). Our results revealed distinct activation patterns during individual finger extensions, especially between index and middle finger extensions, although the activation between ring and little finger extensions showed strong covariance. The activation map was relatively consistent at different muscle contraction levels and for different finger constraint conditions. We also found that distinct activation patterns were more discernible in the proximal-distal direction than in the radial-ulnar direction. The global spatial activation map utilizing surface grid EMG of the extensor digitorum communis muscle provides information for localizing individual compartments of the extensor muscle during finger extensions. This is of potential value for identifying more selective control input for assistive devices. Such information can also provide a basis for understanding hand impairment in individuals with neural disorders.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 91 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 1%
Unknown 90 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 20 22%
Student > Bachelor 12 13%
Student > Master 11 12%
Researcher 8 9%
Student > Doctoral Student 7 8%
Other 11 12%
Unknown 22 24%
Readers by discipline Count As %
Engineering 34 37%
Neuroscience 9 10%
Medicine and Dentistry 7 8%
Nursing and Health Professions 4 4%
Psychology 3 3%
Other 8 9%
Unknown 26 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 January 2020.
All research outputs
#18,368,873
of 23,596,168 outputs
Outputs from Frontiers in Physiology
#7,489
of 14,312 outputs
Outputs of similar age
#189,298
of 279,008 outputs
Outputs of similar age from Frontiers in Physiology
#56
of 99 outputs
Altmetric has tracked 23,596,168 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 14,312 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.7. This one is in the 40th percentile – i.e., 40% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 279,008 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 99 others from the same source and published within six weeks on either side of this one. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.