↓ Skip to main content

The response of chironomid taxonomy- and functional trait-based metrics to fish farm effluent pollution in lotic systems

Overview of attention for article published in Environmental Pollution, July 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (64th percentile)

Mentioned by

twitter
4 X users

Readers on

mendeley
28 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The response of chironomid taxonomy- and functional trait-based metrics to fish farm effluent pollution in lotic systems
Published in
Environmental Pollution, July 2018
DOI 10.1016/j.envpol.2018.07.100
Pubmed ID
Authors

Djuradj Milošević, Katarina Stojanović, Aca Djurdjević, Zoran Marković, Milica Stojković Piperac, Miroslav Živić, Ivana Živić

Abstract

The lotic habitats affected by trout farm waste are colonized with a particular invertebrate community of which chironomids are the most abundant group. However, there is little information available regarding how chironomid community structures respond to this type of pollution at the highest taxonomic resolution. Eight fish farms, together with their lotic systems as recipients, were used to test the variability of the chironomid community and its surrogates (taxonomic and functional metrics) across spatially arranged sampling sites to form a gradual decrease in the trout farm influence. The self organizing map (SOM) classified six different types of chironomid communities which were characteristic for both the control and affected habitats. The species indicator analyses listed 32 taxa as positive indicators of water pollution. The SOM and Kruskal-Wallis test revealed that the pattern of chironomid community structure obtained was mainly driven by six environmental parameters (Altitude, conductivity, distance from the outlet, hardness, HN4-N, NO3-N). Categorical principal components analysis (CATPCA) derived three models for each type of biotic metric, in which for diversity-, taxonomy- and functional feeding group-based metrics, the first two dimensions explained 55.2%, 58.3% and 55.4%, of the total variance respectively for 315 sampling sites. According to this analysis, the total number of taxa (S), abundance and the Shannon-Wiener index (H') (as a diversity metric), as well as the proportion of Tanypodinae (as taxonomic group) and grazers/scraper (GRA) and gatherer collector (GAT)(as FFG metrics), were related to the outlet distance gradient, thus showing great potential to be used in the multimetric approach in bioassessment.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 28 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 28 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 18%
Lecturer 3 11%
Researcher 3 11%
Student > Bachelor 2 7%
Student > Postgraduate 2 7%
Other 5 18%
Unknown 8 29%
Readers by discipline Count As %
Agricultural and Biological Sciences 8 29%
Environmental Science 4 14%
Earth and Planetary Sciences 3 11%
Unspecified 1 4%
Social Sciences 1 4%
Other 1 4%
Unknown 10 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 August 2018.
All research outputs
#15,745,807
of 25,385,509 outputs
Outputs from Environmental Pollution
#5,747
of 13,439 outputs
Outputs of similar age
#190,489
of 341,271 outputs
Outputs of similar age from Environmental Pollution
#110
of 317 outputs
Altmetric has tracked 25,385,509 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,439 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.7. This one has gotten more attention than average, scoring higher than 55% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 341,271 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 42nd percentile – i.e., 42% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 317 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 64% of its contemporaries.