↓ Skip to main content

Identification of functional networks in resting state fMRI data using adaptive sparse representation and affinity propagation clustering

Overview of attention for article published in Frontiers in Neuroscience, October 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
22 Dimensions

Readers on

mendeley
35 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Identification of functional networks in resting state fMRI data using adaptive sparse representation and affinity propagation clustering
Published in
Frontiers in Neuroscience, October 2015
DOI 10.3389/fnins.2015.00383
Pubmed ID
Authors

Xuan Li, Haixian Wang

Abstract

Human brain functional system has been viewed as a complex network. To accurately characterize this brain network, it is important to estimate the functional connectivity between separate brain regions (i.e., association matrix). One common approach to evaluating the connectivity is the pairwise Pearson correlation. However, this bivariate method completely ignores the influence of other regions when computing the pairwise association. Another intractable issue existed in many approaches to further analyzing the network structure is the requirement of applying a threshold to the association matrix. To address these issues, we develop a novel scheme to investigate the brain functional networks. Specifically, we first establish a global functional connection network by using the Adaptive Sparse Representation (ASR), adaptively integrating the sparsity of ℓ1-norm and the grouping effect of ℓ2-norm for linear representation and then identify connectivity patterns with Affinity Propagation (AP) clustering algorithm. Results on both simulated and real data indicate that the proposed scheme is superior to the Pearson correlation in connectivity quality and clustering quality. Our findings suggest that the proposed scheme is an accurate and useful technique to delineate functional network structure for functionally parsimonious and correlated fMRI data with a large number of brain regions.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 35 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Japan 2 6%
United States 1 3%
Germany 1 3%
Brazil 1 3%
Unknown 30 86%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 26%
Student > Master 5 14%
Researcher 3 9%
Professor > Associate Professor 3 9%
Student > Bachelor 2 6%
Other 8 23%
Unknown 5 14%
Readers by discipline Count As %
Neuroscience 8 23%
Computer Science 5 14%
Psychology 5 14%
Agricultural and Biological Sciences 3 9%
Engineering 3 9%
Other 5 14%
Unknown 6 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 August 2016.
All research outputs
#16,721,208
of 25,373,627 outputs
Outputs from Frontiers in Neuroscience
#7,423
of 11,538 outputs
Outputs of similar age
#165,494
of 292,360 outputs
Outputs of similar age from Frontiers in Neuroscience
#90
of 143 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,538 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.9. This one is in the 31st percentile – i.e., 31% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 292,360 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 143 others from the same source and published within six weeks on either side of this one. This one is in the 33rd percentile – i.e., 33% of its contemporaries scored the same or lower than it.