↓ Skip to main content

Resource Recovery Potential From Lignocellulosic Feedstock Upon Lysis With Ionic Liquids

Overview of attention for article published in Frontiers in Bioengineering and Biotechnology, September 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (73rd percentile)
  • Good Attention Score compared to outputs of the same age and source (77th percentile)

Mentioned by

twitter
9 X users

Readers on

mendeley
77 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Resource Recovery Potential From Lignocellulosic Feedstock Upon Lysis With Ionic Liquids
Published in
Frontiers in Bioengineering and Biotechnology, September 2018
DOI 10.3389/fbioe.2018.00119
Pubmed ID
Authors

Beatriz Padrino, Marta Lara-Serrano, Silvia Morales-delaRosa, José M. Campos-Martín, José Luis García Fierro, Fernando Martínez, Juan Antonio Melero, Daniel Puyol

Abstract

Lignocellulosic residues from energy crops offer a high potential to recover bioproducts and biofuels that can be used as raw matter for agriculture activities within a circular economy framework. Anaerobic digestion (AD) is a well-established driver to convert these residues into energy and bioproducts. However, AD of lignocellulosic matter is slow and yields low methane potential, and therefore several pre-treatment methods have been proposed to increase the energy yield of this process. Hereby, we have assessed the pre-treatment of lignocellulosic biomass (barley straw) with the ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate and its effect on the biochemical methane potential (BMP). The BMP of the residue was evaluated at different inoculum to substrate (I/S) ratios and working under meso and thermophilic conditions. Solids destruction upon AD is highly enhanced by the IL-pretreatment. This also resulted in a higher BMP, both in mesophilic as well as thermophilic conditions. At the optimum I/S ratio of 2:1 (dried weight, dw), the BMP of the IL-pre-treated feedstock increased 28 and 80% for 35 days of thermophilic and mesophilic AD, respectively, as compared to the fresh feedstock, achieving values of 364 and 412 LCH4/kgTS. We also explored the effect of this pretreatment on the phosphorus recovery potential from the digestate upon release from the AD process. Thermophilic anaerobic digestion of IL-pre-treated biomass provided the highest P recovery potential from lignocellulosic residues (close to 100% of the theoretical P content of the lignocellulosic feedstock). Therefore, the pretreatment of lignocellulosic feedstock with IL before AD is a promising platform to obtain bioenergy and recover P to be regained for the agriculture sector.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 9 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 77 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 77 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 17%
Student > Master 12 16%
Researcher 12 16%
Student > Postgraduate 6 8%
Student > Doctoral Student 4 5%
Other 7 9%
Unknown 23 30%
Readers by discipline Count As %
Engineering 18 23%
Biochemistry, Genetics and Molecular Biology 6 8%
Environmental Science 4 5%
Chemical Engineering 4 5%
Chemistry 4 5%
Other 14 18%
Unknown 27 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 September 2022.
All research outputs
#4,560,175
of 23,243,271 outputs
Outputs from Frontiers in Bioengineering and Biotechnology
#640
of 6,915 outputs
Outputs of similar age
#88,547
of 336,131 outputs
Outputs of similar age from Frontiers in Bioengineering and Biotechnology
#11
of 48 outputs
Altmetric has tracked 23,243,271 research outputs across all sources so far. Compared to these this one has done well and is in the 80th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 6,915 research outputs from this source. They receive a mean Attention Score of 3.5. This one has done particularly well, scoring higher than 90% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 336,131 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 73% of its contemporaries.
We're also able to compare this research output to 48 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 77% of its contemporaries.