↓ Skip to main content

Benzyl Cyanide Leads to Auxin-Like Effects Through the Action of Nitrilases in Arabidopsis thaliana

Overview of attention for article published in Frontiers in Plant Science, August 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (55th percentile)

Mentioned by

twitter
5 X users
facebook
1 Facebook page

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
20 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Benzyl Cyanide Leads to Auxin-Like Effects Through the Action of Nitrilases in Arabidopsis thaliana
Published in
Frontiers in Plant Science, August 2018
DOI 10.3389/fpls.2018.01240
Pubmed ID
Authors

János Urbancsok, Atle M. Bones, Ralph Kissen

Abstract

Plants within the Brassicales order generate glucosinolate hydrolysis products that can exert different biological effects on several organisms. Here, we evaluated the physiological effects of one of these compounds, benzyl cyanide (phenylacetonitrile), when exogenously applied on Arabidopsis thaliana. Treatment with benzyl cyanide led to a dose-dependent reduction of primary root length and total biomass. Further morphological changes like elongated hypocotyls, epinastic cotyledons, and increased formation of adventitious roots resembled a severe auxin-overproducer phenotype. The elevated auxin response was confirmed by histochemical staining and gene expression analysis of auxin-responsive genes. Nitriles are converted by specific enzymes, nitrilases (NIT1-3), to their corresponding carboxylic acids. The nitrilase mutants nit1 and nit2 tolerated benzyl cyanide treatments better than the wild type, with nit2 being less resistant than nit1. A NIT2RNAi line suppressing several nitrilases was resistant to all tested benzyl cyanide concentrations. When exposed to phenylacetic acid (PAA) - the corresponding carboxylic acid of benzyl cyanide - wild type and mutant seedlings were, however, equally susceptible and showed a more severe auxin phenotype than upon cyanide treatment. Here, we demonstrate that the auxin-like effects triggered by benzyl cyanide on Arabidopsis are due to its nitrilase-mediated conversion to the natural auxin PAA.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 20 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 20 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 4 20%
Researcher 4 20%
Student > Ph. D. Student 3 15%
Lecturer > Senior Lecturer 2 10%
Student > Postgraduate 2 10%
Other 3 15%
Unknown 2 10%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 9 45%
Agricultural and Biological Sciences 9 45%
Unknown 2 10%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 September 2018.
All research outputs
#13,625,854
of 23,102,082 outputs
Outputs from Frontiers in Plant Science
#6,775
of 20,728 outputs
Outputs of similar age
#170,632
of 334,201 outputs
Outputs of similar age from Frontiers in Plant Science
#194
of 455 outputs
Altmetric has tracked 23,102,082 research outputs across all sources so far. This one is in the 39th percentile – i.e., 39% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,728 research outputs from this source. They receive a mean Attention Score of 3.9. This one has gotten more attention than average, scoring higher than 65% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 334,201 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 455 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 55% of its contemporaries.