↓ Skip to main content

Plasticity of Fear and Safety Neurons of the Amygdala in Response to Fear Extinction

Overview of attention for article published in Frontiers in Behavioral Neuroscience, December 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (82nd percentile)
  • High Attention Score compared to outputs of the same age and source (82nd percentile)

Mentioned by

twitter
13 X users

Readers on

mendeley
54 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Plasticity of Fear and Safety Neurons of the Amygdala in Response to Fear Extinction
Published in
Frontiers in Behavioral Neuroscience, December 2015
DOI 10.3389/fnbeh.2015.00354
Pubmed ID
Authors

Susan Sangha

Abstract

Fear inhibition learning induces plasticity and remodeling of circuits within the amygdala. Most studies examine these changes in nondiscriminative fear conditioning paradigms. Using a discriminative fear, safety, and reward conditioning task, Sangha et al. (2013) have previously reported several neural microcircuits within the basal amygdala (BA) which discriminate among these cues, including a subpopulation of neurons responding selectively to a safety cue and not a fear cue. Here, the hypothesis that these "safety" neurons isolated during discriminative conditioning are biased to become fear cue responsive as a result of extinction, when fear behavior diminishes, was tested. Although 41% of "safety" neurons became fear cue responsive as a result of extinction, the data revealed that there was no bias for these neurons to become preferentially responsive during fear extinction compared to the other identified subgroups. In addition to the plasticity seen in the "safety" neurons, 44% of neurons unresponsive to either the fear cue or safety cue during discriminative conditioning became fear cue responsive during extinction. Together these emergent responses to the fear cue as a result of extinction support the hypothesis that new learning underlies extinction. In contrast, 47% of neurons responsive to the fear cue during discriminative conditioning became unresponsive to the fear cue during extinction. These findings are consistent with a suppression of neural responding mediated by inhibitory learning, or, potentially, by direct unlearning. Together, the data support extinction as an active process involving both gains and losses of responses to the fear cue and suggests the final output of the integrated BA circuit in influencing fear behavior is a balance of excitation and inhibition, and perhaps reversal of learning-induced changes.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 13 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 54 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 2%
Unknown 53 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 15 28%
Researcher 10 19%
Student > Bachelor 7 13%
Student > Master 6 11%
Other 3 6%
Other 5 9%
Unknown 8 15%
Readers by discipline Count As %
Neuroscience 15 28%
Psychology 14 26%
Agricultural and Biological Sciences 6 11%
Biochemistry, Genetics and Molecular Biology 2 4%
Medicine and Dentistry 2 4%
Other 1 2%
Unknown 14 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 8. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 February 2016.
All research outputs
#3,937,425
of 22,834,308 outputs
Outputs from Frontiers in Behavioral Neuroscience
#656
of 3,171 outputs
Outputs of similar age
#67,055
of 390,634 outputs
Outputs of similar age from Frontiers in Behavioral Neuroscience
#15
of 85 outputs
Altmetric has tracked 22,834,308 research outputs across all sources so far. Compared to these this one has done well and is in the 82nd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,171 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.4. This one has done well, scoring higher than 79% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 390,634 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 82% of its contemporaries.
We're also able to compare this research output to 85 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 82% of its contemporaries.