↓ Skip to main content

CD4+ T Cells Targeting Dominant and Cryptic Epitopes from Bacillus anthracis Lethal Factor

Overview of attention for article published in Frontiers in Microbiology, January 2016
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (52nd percentile)
  • Above-average Attention Score compared to outputs of the same age and source (56th percentile)

Mentioned by

twitter
3 X users

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
23 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
CD4+ T Cells Targeting Dominant and Cryptic Epitopes from Bacillus anthracis Lethal Factor
Published in
Frontiers in Microbiology, January 2016
DOI 10.3389/fmicb.2015.01506
Pubmed ID
Authors

Stephanie Ascough, Rebecca J. Ingram, Karen K. Y. Chu, Julie A. Musson, Stephen J. Moore, Theresa Gallagher, Les Baillie, Ethel D. Williamson, John H. Robinson, Bernard Maillere, Rosemary J. Boyton, Daniel M. Altmann

Abstract

Anthrax is an endemic infection in many countries, particularly in the developing world. The causative agent, Bacillus anthracis, mediates disease through the secretion of binary exotoxins. Until recently, research into adaptive immunity targeting this bacterial pathogen has largely focused on the humoral response to these toxins. There is, however, growing recognition that cellular immune responses involving IFNγ producing CD4+ T cells also contribute significantly to a protective memory response. An established concept in adaptive immunity to infection is that during infection of host cells, new microbial epitopes may be revealed, leading to immune recognition of so called 'cryptic' or 'subdominant' epitopes. We analyzed the response to both cryptic and immunodominant T cell epitopes derived from the toxin component lethal factor and presented by a range of HLA-DR alleles. Using IFNγ-ELISpot assays we characterized epitopes that elicited a response following immunization with synthetic peptide and the whole protein and tested their capacities to bind purified HLA-DR molecules in vitro. We found that DR1 transgenics demonstrated T cell responses to a greater number of domain III cryptic epitopes than other HLA-DR transgenics, and that this pattern was repeated with the immunodominant epitopes, as a greater proportion of these epitopes induced a T cell response when presented within the context of the whole protein. Immunodominant epitopes LF457-476 and LF467-487 were found to induce a T cell response to the peptide, as well as to the whole native LF protein in DR1 and DR15, but not in DR4 transgenics. The analysis of Domain I revealed the presence of several unique cryptic epitopes all of which showed a strong to moderate relative binding affinity to HLA-DR4 molecules. However, none of the cryptic epitopes from either domain III or I displayed notably high binding affinities across all HLA-DR alleles assayed. These responses were influenced by the specific HLA alleles presenting the peptide, and imply that construction of future epitope string vaccines which are immunogenic across a wide range of HLA alleles could benefit from a combination of both cryptic and immunodominant anthrax epitopes.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 23 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 23 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 26%
Lecturer 2 9%
Student > Master 2 9%
Student > Bachelor 2 9%
Student > Doctoral Student 1 4%
Other 3 13%
Unknown 7 30%
Readers by discipline Count As %
Immunology and Microbiology 6 26%
Agricultural and Biological Sciences 4 17%
Chemical Engineering 2 9%
Biochemistry, Genetics and Molecular Biology 1 4%
Nursing and Health Professions 1 4%
Other 2 9%
Unknown 7 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 July 2016.
All research outputs
#13,218,008
of 22,835,198 outputs
Outputs from Frontiers in Microbiology
#9,867
of 24,819 outputs
Outputs of similar age
#184,250
of 393,343 outputs
Outputs of similar age from Frontiers in Microbiology
#197
of 462 outputs
Altmetric has tracked 22,835,198 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 24,819 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one has gotten more attention than average, scoring higher than 58% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 393,343 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 52% of its contemporaries.
We're also able to compare this research output to 462 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 56% of its contemporaries.