↓ Skip to main content

Groundwater Isolation Governs Chemistry and Microbial Community Structure along Hydrologic Flowpaths

Overview of attention for article published in Frontiers in Microbiology, December 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Readers on

mendeley
114 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Groundwater Isolation Governs Chemistry and Microbial Community Structure along Hydrologic Flowpaths
Published in
Frontiers in Microbiology, December 2015
DOI 10.3389/fmicb.2015.01457
Pubmed ID
Authors

Sarah Ben Maamar, Luc Aquilina, Achim Quaiser, Hélène Pauwels, Sophie Michon-Coudouel, Virginie Vergnaud-Ayraud, Thierry Labasque, Clément Roques, Benjamin W. Abbott, Alexis Dufresne

Abstract

This study deals with the effects of hydrodynamic functioning of hard-rock aquifers on microbial communities. In hard-rock aquifers, the heterogeneous hydrologic circulation strongly constrains groundwater residence time, hydrochemistry, and nutrient supply. Here, residence time and a wide range of environmental factors were used to test the influence of groundwater circulation on active microbial community composition, assessed by high throughput sequencing of 16S rRNA. Groundwater of different ages was sampled along hydrogeologic paths or loops, in three contrasting hard-rock aquifers in Brittany (France). Microbial community composition was driven by groundwater residence time and hydrogeologic loop position. In recent groundwater, in the upper section of the aquifers or in their recharge zone, surface water inputs caused high nitrate concentration and the predominance of putative denitrifiers. Although denitrification does not seem to fully decrease nitrate concentrations due to low dissolved organic carbon concentrations, nitrate input has a major effect on microbial communities. The occurrence of taxa possibly associated with the application of organic fertilizers was also noticed. In ancient isolated groundwater, an ecosystem based on Fe(II)/Fe(III) and S/SO4 redox cycling was observed down to several 100 of meters below the surface. In this depth section, microbial communities were dominated by iron oxidizing bacteria belonging to Gallionellaceae. The latter were associated to old groundwater with high Fe concentrations mixed to a small but not null percentage of recent groundwater inducing oxygen concentrations below 2.5 mg/L. These two types of microbial community were observed in the three sites, independently of site geology and aquifer geometry, indicating hydrogeologic circulation exercises a major control on microbial communities.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 114 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 <1%
Canada 1 <1%
Unknown 112 98%

Demographic breakdown

Readers by professional status Count As %
Researcher 28 25%
Student > Ph. D. Student 21 18%
Student > Master 18 16%
Student > Doctoral Student 5 4%
Professor > Associate Professor 4 4%
Other 11 10%
Unknown 27 24%
Readers by discipline Count As %
Environmental Science 26 23%
Earth and Planetary Sciences 20 18%
Agricultural and Biological Sciences 14 12%
Biochemistry, Genetics and Molecular Biology 7 6%
Engineering 4 4%
Other 9 8%
Unknown 34 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 January 2016.
All research outputs
#14,830,609
of 22,836,570 outputs
Outputs from Frontiers in Microbiology
#13,814
of 24,819 outputs
Outputs of similar age
#217,020
of 390,618 outputs
Outputs of similar age from Frontiers in Microbiology
#228
of 412 outputs
Altmetric has tracked 22,836,570 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 24,819 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one is in the 39th percentile – i.e., 39% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 390,618 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 412 others from the same source and published within six weeks on either side of this one. This one is in the 38th percentile – i.e., 38% of its contemporaries scored the same or lower than it.