↓ Skip to main content

Differential Preparation Intervals Modulate Repetition Processes in Task Switching: An ERP Study

Overview of attention for article published in Frontiers in Human Neuroscience, February 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
3 X users

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
21 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Differential Preparation Intervals Modulate Repetition Processes in Task Switching: An ERP Study
Published in
Frontiers in Human Neuroscience, February 2016
DOI 10.3389/fnhum.2016.00057
Pubmed ID
Authors

Min Wang, Ping Yang, Qian-Jing Zhao, Meng Wang, Zhenlan Jin, Ling Li

Abstract

In task-switching paradigms, reaction times (RTs) switch cost (SC) and the neural correlates underlying the SC are affected by different preparation intervals. However, little is known about the effect of the preparation interval on the repetition processes in task-switching. To examine this effect we utilized a cued task-switching paradigm with long sequences of repeated trials. Response-stimulus intervals (RSI) and cue-stimulus intervals (CSI) were manipulated in short and long conditions. Electroencephalography (EEG) and behavioral data were recorded. We found that with increasing repetitions, RTs were faster in the short CSI conditions, while P3 amplitudes decreased in the LS (long RSI and short CSI) conditions. Positive correlations between RT benefit and P3 activation decrease (repeat 1 - repeat 5), and between the slope of the RT and P3 regression lines were observed only in the LS condition. Our findings suggest that differential preparation intervals modulate repetition processes in task switching.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 21 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 21 100%

Demographic breakdown

Readers by professional status Count As %
Student > Postgraduate 4 19%
Student > Ph. D. Student 4 19%
Student > Master 3 14%
Researcher 3 14%
Student > Doctoral Student 1 5%
Other 2 10%
Unknown 4 19%
Readers by discipline Count As %
Psychology 5 24%
Neuroscience 5 24%
Agricultural and Biological Sciences 3 14%
Philosophy 1 5%
Biochemistry, Genetics and Molecular Biology 1 5%
Other 2 10%
Unknown 4 19%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 February 2016.
All research outputs
#15,359,595
of 22,849,304 outputs
Outputs from Frontiers in Human Neuroscience
#5,275
of 7,162 outputs
Outputs of similar age
#176,591
of 298,010 outputs
Outputs of similar age from Frontiers in Human Neuroscience
#128
of 173 outputs
Altmetric has tracked 22,849,304 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,162 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.6. This one is in the 20th percentile – i.e., 20% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 298,010 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 173 others from the same source and published within six weeks on either side of this one. This one is in the 21st percentile – i.e., 21% of its contemporaries scored the same or lower than it.