↓ Skip to main content

Genetic Network Inference Using Hierarchical Structure

Overview of attention for article published in Frontiers in Physiology, February 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
10 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Genetic Network Inference Using Hierarchical Structure
Published in
Frontiers in Physiology, February 2016
DOI 10.3389/fphys.2016.00057
Pubmed ID
Authors

Shuhei Kimura, Masato Tokuhisa, Mariko Okada-Hatakeyama

Abstract

Many methods for inferring genetic networks have been proposed, but the regulations they infer often include false-positives. Several researchers have attempted to reduce these erroneous regulations by proposing the use of a priori knowledge about the properties of genetic networks such as their sparseness, scale-free structure, and so on. This study focuses on another piece of a priori knowledge, namely, that biochemical networks exhibit hierarchical structures. Based on this idea, we propose an inference approach that uses the hierarchical structure in a target genetic network. To obtain a reasonable hierarchical structure, the first step of the proposed approach is to infer multiple genetic networks from the observed gene expression data. We take this step using an existing method that combines a genetic network inference method with a bootstrap method. The next step is to extract a hierarchical structure from the inferred networks that is consistent with most of the networks. Third, we use the hierarchical structure obtained to assign confidence values to all candidate regulations. Numerical experiments are also performed to demonstrate the effectiveness of using the hierarchical structure in the genetic network inference. The improvement accomplished by the use of the hierarchical structure is small. However, the hierarchical structure could be used to improve the performances of many existing inference methods.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 10 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 10 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 30%
Professor > Associate Professor 2 20%
Professor 1 10%
Researcher 1 10%
Student > Master 1 10%
Other 0 0%
Unknown 2 20%
Readers by discipline Count As %
Agricultural and Biological Sciences 3 30%
Mathematics 1 10%
Biochemistry, Genetics and Molecular Biology 1 10%
Medicine and Dentistry 1 10%
Unknown 4 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 March 2016.
All research outputs
#16,761,801
of 26,374,136 outputs
Outputs from Frontiers in Physiology
#6,216
of 15,816 outputs
Outputs of similar age
#171,950
of 314,941 outputs
Outputs of similar age from Frontiers in Physiology
#74
of 138 outputs
Altmetric has tracked 26,374,136 research outputs across all sources so far. This one is in the 34th percentile – i.e., 34% of other outputs scored the same or lower than it.
So far Altmetric has tracked 15,816 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.4. This one has gotten more attention than average, scoring higher than 58% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 314,941 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 42nd percentile – i.e., 42% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 138 others from the same source and published within six weeks on either side of this one. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.