↓ Skip to main content

Stepping Out of the Shade: Control of Neuronal Activity by the Scaffold Protein Kidins220/ARMS

Overview of attention for article published in Frontiers in Cellular Neuroscience, March 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Readers on

mendeley
35 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Stepping Out of the Shade: Control of Neuronal Activity by the Scaffold Protein Kidins220/ARMS
Published in
Frontiers in Cellular Neuroscience, March 2016
DOI 10.3389/fncel.2016.00068
Pubmed ID
Authors

Joachim Scholz-Starke, Fabrizia Cesca

Abstract

The correct functioning of the nervous system depends on the exquisitely fine control of neuronal excitability and synaptic plasticity, which relies on an intricate network of protein-protein interactions and signaling that shapes neuronal homeostasis during development and in adulthood. In this complex scenario, Kinase D interacting substrate of 220 kDa/ankyrin repeat-rich membrane spanning (Kidins220/ARMS) acts as a multi-functional scaffold protein with preferential expression in the nervous system. Engaged in a plethora of interactions with membrane receptors, cytosolic signaling components and cytoskeletal proteins, Kidins220/ARMS is implicated in numerous cellular functions including neuronal survival, neurite outgrowth and maturation and neuronal activity, often in the context of neurotrophin (NT) signaling pathways. Recent studies have highlighted a number of cell- and context-specific roles for this protein in the control of synaptic transmission and neuronal excitability, which are at present far from being completely understood. In addition, some evidence has began to emerge, linking alterations of Kidins220 expression to the onset of various neurodegenerative diseases and neuropsychiatric disorders. In this review, we present a concise summary of our fragmentary knowledge of Kidins220/ARMS biological functions, focusing on the mechanism(s) by which it controls various aspects of neuronal activity. We have tried, where possible, to discuss the available evidence in the wider context of NT-mediated regulation, and to outline emerging roles of Kidins220/ARMS in human pathologies.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 35 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 35 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 14%
Student > Master 4 11%
Researcher 4 11%
Student > Bachelor 4 11%
Student > Doctoral Student 3 9%
Other 6 17%
Unknown 9 26%
Readers by discipline Count As %
Agricultural and Biological Sciences 8 23%
Neuroscience 7 20%
Biochemistry, Genetics and Molecular Biology 4 11%
Medicine and Dentistry 4 11%
Unspecified 2 6%
Other 1 3%
Unknown 9 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 March 2016.
All research outputs
#17,793,546
of 22,856,968 outputs
Outputs from Frontiers in Cellular Neuroscience
#2,942
of 4,254 outputs
Outputs of similar age
#204,545
of 299,541 outputs
Outputs of similar age from Frontiers in Cellular Neuroscience
#63
of 100 outputs
Altmetric has tracked 22,856,968 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,254 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one is in the 23rd percentile – i.e., 23% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 299,541 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 100 others from the same source and published within six weeks on either side of this one. This one is in the 33rd percentile – i.e., 33% of its contemporaries scored the same or lower than it.