↓ Skip to main content

Information Compression, Multiple Alignment, and the Representation and Processing of Knowledge in the Brain

Overview of attention for article published in Frontiers in Psychology, November 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (74th percentile)
  • Good Attention Score compared to outputs of the same age and source (65th percentile)

Mentioned by

twitter
15 X users

Citations

dimensions_citation
21 Dimensions

Readers on

mendeley
41 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Information Compression, Multiple Alignment, and the Representation and Processing of Knowledge in the Brain
Published in
Frontiers in Psychology, November 2016
DOI 10.3389/fpsyg.2016.01584
Pubmed ID
Authors

J. Gerard Wolff

Abstract

The SP theory of intelligence, with its realization in the SP computer model, aims to simplify and integrate observations and concepts across artificial intelligence, mainstream computing, mathematics, and human perception and cognition, with information compression as a unifying theme. This paper describes how abstract structures and processes in the theory may be realized in terms of neurons, their interconnections, and the transmission of signals between neurons. This part of the SP theory-SP-neural-is a tentative and partial model for the representation and processing of knowledge in the brain. Empirical support for the SP theory-outlined in the paper-provides indirect support for SP-neural. In the abstract part of the SP theory (SP-abstract), all kinds of knowledge are represented with patterns, where a pattern is an array of atomic symbols in one or two dimensions. In SP-neural, the concept of a "pattern" is realized as an array of neurons called a pattern assembly, similar to Hebb's concept of a "cell assembly" but with important differences. Central to the processing of information in SP-abstract is information compression via the matching and unification of patterns (ICMUP) and, more specifically, information compression via the powerful concept of multiple alignment, borrowed and adapted from bioinformatics. Processes such as pattern recognition, reasoning and problem solving are achieved via the building of multiple alignments, while unsupervised learning is achieved by creating patterns from sensory information and also by creating patterns from multiple alignments in which there is a partial match between one pattern and another. It is envisaged that, in SP-neural, short-lived neural structures equivalent to multiple alignments will be created via an inter-play of excitatory and inhibitory neural signals. It is also envisaged that unsupervised learning will be achieved by the creation of pattern assemblies from sensory information and from the neural equivalents of multiple alignments, much as in the non-neural SP theory-and significantly different from the "Hebbian" kinds of learning which are widely used in the kinds of artificial neural network that are popular in computer science. The paper discusses several associated issues, with relevant empirical evidence.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 15 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 41 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 2%
Austria 1 2%
Unknown 39 95%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 29%
Student > Doctoral Student 3 7%
Student > Bachelor 3 7%
Other 2 5%
Lecturer 2 5%
Other 9 22%
Unknown 10 24%
Readers by discipline Count As %
Computer Science 8 20%
Psychology 7 17%
Engineering 5 12%
Neuroscience 4 10%
Mathematics 2 5%
Other 6 15%
Unknown 9 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 April 2020.
All research outputs
#5,241,522
of 25,595,500 outputs
Outputs from Frontiers in Psychology
#8,454
of 34,682 outputs
Outputs of similar age
#79,361
of 318,106 outputs
Outputs of similar age from Frontiers in Psychology
#154
of 445 outputs
Altmetric has tracked 25,595,500 research outputs across all sources so far. Compared to these this one has done well and is in the 79th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 34,682 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 13.3. This one has done well, scoring higher than 75% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 318,106 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 74% of its contemporaries.
We're also able to compare this research output to 445 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 65% of its contemporaries.