↓ Skip to main content

The Role of cGMP on Adenosine A1 Receptor-mediated Inhibition of Synaptic Transmission at the Hippocampus

Overview of attention for article published in Frontiers in Pharmacology, April 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
21 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The Role of cGMP on Adenosine A1 Receptor-mediated Inhibition of Synaptic Transmission at the Hippocampus
Published in
Frontiers in Pharmacology, April 2016
DOI 10.3389/fphar.2016.00103
Pubmed ID
Authors

Isa Pinto, André Serpa, Ana M. Sebastião, José F. Cascalheira

Abstract

Both adenosine A1 receptor and cGMP inhibit synaptic transmission at the hippocampus and recently it was found that A1 receptor increased cGMP levels in hippocampus, but the role of cGMP on A1 receptor-mediated inhibition of synaptic transmission remains to be established. In the present work we investigated if blocking the NOS/sGC/cGMP/PKG pathway using nitric oxide synthase (NOS), protein kinase G (PKG), and soluble guanylyl cyclase (sGC) inhibitors modify the A1 receptor effect on synaptic transmission. Neurotransmission was evaluated by measuring the slope of field excitatory postsynaptic potentials (fEPSPs) evoked by electrical stimulation at hippocampal slices. N6-cyclopentyladenosine (CPA, 15 nM), a selective A1 receptor agonist, reversibly decreased the fEPSPs by 54 ± 5%. Incubation of the slices with an inhibitor of NOS (L-NAME, 200 μM) decreased the CPA effect on fEPSPs by 57 ± 9% in female rats. In males, ODQ (10 μM), an sGC inhibitor, decreased the CPA inhibitory effect on fEPSPs by 23 ± 6%, but only when adenosine deaminase (ADA,1 U/ml) was present; similar results were found in females, where ODQ decreased CPA-induced inhibition of fEPSP slope by 23 ± 7%. In male rats, the presence of the PKG inhibitor (KT5823, 1 nM) decreased the CPA effect by 45.0 ± 9%; similar results were obtained in females, where KT5823 caused a 32 ± 9% decrease on the CPA effect. In conclusion, the results suggest that the inhibitory action of adenosine A1 receptors on synaptic transmission at hippocampus is, in part, mediated by the NOS/sGC/cGMP/PKG pathway.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 21 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 21 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 29%
Student > Bachelor 3 14%
Researcher 3 14%
Professor > Associate Professor 2 10%
Student > Master 2 10%
Other 3 14%
Unknown 2 10%
Readers by discipline Count As %
Neuroscience 11 52%
Agricultural and Biological Sciences 4 19%
Veterinary Science and Veterinary Medicine 1 5%
Biochemistry, Genetics and Molecular Biology 1 5%
Immunology and Microbiology 1 5%
Other 1 5%
Unknown 2 10%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 May 2016.
All research outputs
#18,453,763
of 22,865,319 outputs
Outputs from Frontiers in Pharmacology
#8,272
of 16,140 outputs
Outputs of similar age
#218,990
of 298,997 outputs
Outputs of similar age from Frontiers in Pharmacology
#49
of 97 outputs
Altmetric has tracked 22,865,319 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 16,140 research outputs from this source. They receive a mean Attention Score of 4.9. This one is in the 37th percentile – i.e., 37% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 298,997 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 97 others from the same source and published within six weeks on either side of this one. This one is in the 35th percentile – i.e., 35% of its contemporaries scored the same or lower than it.