↓ Skip to main content

Reduced Glutamatergic Currents and Dendritic Branching of Layer 5 Pyramidal Cells Contribute to Medial Prefrontal Cortex Deactivation in a Rat Model of Neuropathic Pain

Overview of attention for article published in Frontiers in Cellular Neuroscience, May 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
82 Dimensions

Readers on

mendeley
64 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Reduced Glutamatergic Currents and Dendritic Branching of Layer 5 Pyramidal Cells Contribute to Medial Prefrontal Cortex Deactivation in a Rat Model of Neuropathic Pain
Published in
Frontiers in Cellular Neuroscience, May 2016
DOI 10.3389/fncel.2016.00133
Pubmed ID
Authors

Crystle J. Kelly, Mei Huang, Herbert Meltzer, Marco Martina

Abstract

Multiple studies have demonstrated that neuropathic pain is associated with major reorganization in multiple brain areas. In line with the strong emotional salience of chronic pain, involvement of the limbic system appears particularly important. Within the past few years, it has become clear that the functional deactivation of the prefrontal cortex (PFC) is critical for both the cognitive/emotional and the sensory components of pain. However, at the cellular level, details of this deactivation remain in large part unclear. Here we show that 1 week after a peripheral neuropathic injury (Spared Nerve Injury model) pyramidal cells in layer 5 (L5) of the rat medial PFC show responses to excitatory glutamatergic inputs that are reduced by about 50%, as well as reduced frequency of spontaneous excitatory synaptic currents. Additionally, these cells have reduced membrane capacitance and increased input resistance. All these findings are consistent with decreased dendritic length, thus we performed a detailed morphological analysis on a subset of the recorded neurons. We found that the apical dendrites proximal to the soma (excluding the tuft) are shorter and less complex in SNI animals, in agreement with the reduced capacitance and glutamatergic input. Finally, we used in vivo microdialysis to compare the basal concentrations of glutamate and GABA in the PFC of sham and SNI rats and found that ambient glutamate is decreased in SNI rats. Taken together, these data show that impaired glutamatergic transmission contributes to the functional deactivation of the mPFC in neuropathic pain. Additionally, the reduced branching of apical dendrites of L5 pyramidal neurons may underlay the gray matter reduction in chronic pain.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 64 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 64 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 20%
Student > Bachelor 7 11%
Researcher 7 11%
Other 6 9%
Student > Master 6 9%
Other 6 9%
Unknown 19 30%
Readers by discipline Count As %
Neuroscience 26 41%
Agricultural and Biological Sciences 4 6%
Psychology 3 5%
Medicine and Dentistry 3 5%
Biochemistry, Genetics and Molecular Biology 2 3%
Other 5 8%
Unknown 21 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 June 2016.
All research outputs
#16,547,363
of 26,550,749 outputs
Outputs from Frontiers in Cellular Neuroscience
#2,370
of 4,824 outputs
Outputs of similar age
#199,747
of 351,908 outputs
Outputs of similar age from Frontiers in Cellular Neuroscience
#39
of 82 outputs
Altmetric has tracked 26,550,749 research outputs across all sources so far. This one is in the 36th percentile – i.e., 36% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,824 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.9. This one is in the 47th percentile – i.e., 47% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 351,908 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 42nd percentile – i.e., 42% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 82 others from the same source and published within six weeks on either side of this one. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.