↓ Skip to main content

Concurrent activity of anammox and denitrifying bacteria in the Black Sea

Overview of attention for article published in Frontiers in Microbiology, January 2012
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Citations

dimensions_citation
22 Dimensions

Readers on

mendeley
65 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Concurrent activity of anammox and denitrifying bacteria in the Black Sea
Published in
Frontiers in Microbiology, January 2012
DOI 10.3389/fmicb.2012.00256
Pubmed ID
Authors

John B. Kirkpatrick, Clara A. Fuchsman, Evgeniy Yakushev, James T. Staley, James W. Murray

Abstract

After the discovery of ANaerobic AMMonium OXidation (anammox) in the environment, the role of heterotrophic denitrification as the main marine pathway for fixed N loss has been questioned. A 3 part, 15 month time series investigating nitrite reductase (nirS) mRNA transcripts at a single location in the Black Sea was conducted in order to better understand the activity of anammox and denitrifying bacteria. Here we show that both of these groups were active, as well as being concurrent in the lower suboxic zone over this time span. Their distributions, however, differed in that only expression of denitrification-type nirS was seen in the upper suboxic zone, where geochemistry was variable. Depth profiles covering the suboxic zone showed that the four groups of anammox-type sequences were expressed consistently in the lower suboxic zone, and were consistent with anammox 16 S rDNA gene profiles. By contrast, denitrifier-type nirS sequence groups were mixed; some groups exhibited consistent expression in the lower suboxic zone, while others appeared less consistent. Co-occurrence of both anammox and denitrifier expression was common and ongoing. Both types of transcripts were also found in samples with low concentrations of sulfide (>2 μM). Six major groups of denitrifier-type nirS transcripts were identified, and several groups of denitrifier-type nirS transcripts were closely related to sequences from the Baltic Sea. An increase in denitrifier-type nirS transcript diversity and depth range in October 2007 corresponded to a small increase in mixed layer net community productivity (NCP) as measured by O(2)/Ar gas ratios, as well as to an increase in N(2) concentrations in the suboxic zone. Taken together, the variations in expression patterns between anammox and denitrification provide one possible explanation as to how near instantaneous rate measurements, such as isotope spike experiments, may regularly detect anammox activity but underreport denitrification.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 65 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Spain 1 2%
Netherlands 1 2%
Germany 1 2%
Austria 1 2%
Unknown 61 94%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 20 31%
Researcher 15 23%
Student > Doctoral Student 9 14%
Professor 4 6%
Other 3 5%
Other 11 17%
Unknown 3 5%
Readers by discipline Count As %
Environmental Science 18 28%
Agricultural and Biological Sciences 16 25%
Earth and Planetary Sciences 11 17%
Engineering 3 5%
Chemistry 3 5%
Other 6 9%
Unknown 8 12%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 July 2012.
All research outputs
#17,640,327
of 22,675,759 outputs
Outputs from Frontiers in Microbiology
#16,902
of 24,472 outputs
Outputs of similar age
#190,634
of 244,088 outputs
Outputs of similar age from Frontiers in Microbiology
#175
of 317 outputs
Altmetric has tracked 22,675,759 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 24,472 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one is in the 30th percentile – i.e., 30% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 244,088 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 21st percentile – i.e., 21% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 317 others from the same source and published within six weeks on either side of this one. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.