↓ Skip to main content

Response inhibition signals and miscoding of direction in dorsomedial striatum

Overview of attention for article published in Frontiers in Integrative Neuroscience, January 2012
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
34 Dimensions

Readers on

mendeley
50 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Response inhibition signals and miscoding of direction in dorsomedial striatum
Published in
Frontiers in Integrative Neuroscience, January 2012
DOI 10.3389/fnint.2012.00069
Pubmed ID
Authors

Daniel W. Bryden, Amanda C. Burton, Vadim Kashtelyan, Brian R. Barnett, Matthew R. Roesch

Abstract

The ability to inhibit action is critical for everyday behavior and is affected by a variety of disorders. Behavioral control and response inhibition is thought to depend on a neural circuit that includes the dorsal striatum, yet the neural signals that lead to response inhibition and its failure are unclear. To address this issue, we recorded from neurons in rat dorsomedial striatum (mDS) in a novel task in which rats responded to a spatial cue that signaled that reward would be delivered either to the left or to the right. On 80% of trials rats were instructed to respond in the direction cued by the light (GO). On 20% of trials a second light illuminated instructing the rat to refrain from making the cued movement and move in the opposite direction (STOP). Many neurons in mDS encoded direction, firing more or less strongly for GO movements made ipsilateral or contralateral to the recording electrode. Neurons that fired more strongly for contralateral GO responses were more active when rats were faster, showed reduced activity on STOP trials, and miscoded direction on errors, suggesting that when these neurons were overly active, response inhibition failed. Neurons that decreased firing for contralateral movement were excited during trials in which the rat was required to stop the ipsilateral movement. For these neurons activity was reduced when errors were made and was negatively correlated with movement time suggesting that when these neurons were less active on STOP trials, response inhibition failed. Finally, the activity of a significant number of neurons represented a global inhibitory signal, firing more strongly during response inhibition regardless of response direction. Breakdown by cell type suggests that putative medium spiny neurons (MSNs) tended to fire more strongly under STOP trials, whereas putative interneurons exhibited both activity patterns.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 50 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Netherlands 1 2%
United States 1 2%
Italy 1 2%
Unknown 47 94%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 14 28%
Researcher 10 20%
Professor > Associate Professor 5 10%
Student > Doctoral Student 4 8%
Other 4 8%
Other 9 18%
Unknown 4 8%
Readers by discipline Count As %
Neuroscience 19 38%
Agricultural and Biological Sciences 13 26%
Psychology 9 18%
Nursing and Health Professions 1 2%
Physics and Astronomy 1 2%
Other 3 6%
Unknown 4 8%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 September 2012.
All research outputs
#20,166,700
of 22,678,224 outputs
Outputs from Frontiers in Integrative Neuroscience
#754
of 853 outputs
Outputs of similar age
#221,176
of 244,101 outputs
Outputs of similar age from Frontiers in Integrative Neuroscience
#74
of 93 outputs
Altmetric has tracked 22,678,224 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 853 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.3. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 244,101 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 93 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.