↓ Skip to main content

Circadian Oscillations within the Hippocampus Support Memory Formation and Persistence

Overview of attention for article published in Frontiers in Molecular Neuroscience, January 2012
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (58th percentile)

Mentioned by

twitter
3 X users
facebook
1 Facebook page

Citations

dimensions_citation
34 Dimensions

Readers on

mendeley
68 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Circadian Oscillations within the Hippocampus Support Memory Formation and Persistence
Published in
Frontiers in Molecular Neuroscience, January 2012
DOI 10.3389/fnmol.2012.00046
Pubmed ID
Authors

Kristin L. Eckel-Mahan

Abstract

The ability to sustain memories over long periods of time, sometimes even a lifetime, is one of the most remarkable properties of the brain. Much knowledge has been gained over the past few decades regarding the molecular correlates of memory formation. Once a memory is forged, however, the molecular events that provide permanence are as of yet unclear. Studies in multiple organisms have revealed that circadian rhythmicity is important for the formation, stability, and recall of memories (Gerstner et al., 2009).The neuronal events that provide this link need to be explored further. This article will discuss the findings related to the circadian regulation of memory-dependent processes in the hippocampus. Specifically, the circadian-controlled mitogen-activated protein kinase (MAPK) and cAMP signal transduction pathway plays critical roles in the consolidation of hippocampus-dependent memory. A series of studies have revealed the circadian oscillation of this pathway within the hippocampus, an activity that is absent in memory-deficient, transgenic mice lacking Ca(2+)-stimulated adenylyl cyclases. Interference with these oscillations proceeding the cellular memory consolidation period impairs the persistence of hippocampus-dependent memory. These data suggest that the persistence of long-term memories may depend upon reactivation of this signal transduction pathway in the hippocampus during the circadian cycle. New data reveals the dependence of hippocampal oscillation in MAPK activity on the suprachiasmatic nucleus, again underscoring the importance of this region in maintaining the circadian physiology of memory. Finally, the downstream ramification of these oscillations in terms of gene expression and epigenetics should be considered, as emerging evidence is pointing strongly to a circadian link between epigenetics and long-term synaptic plasticity.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 68 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Portugal 2 3%
Chile 1 1%
United States 1 1%
France 1 1%
Unknown 63 93%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 17 25%
Researcher 11 16%
Student > Master 11 16%
Student > Bachelor 6 9%
Professor > Associate Professor 5 7%
Other 9 13%
Unknown 9 13%
Readers by discipline Count As %
Agricultural and Biological Sciences 26 38%
Neuroscience 15 22%
Biochemistry, Genetics and Molecular Biology 6 9%
Medicine and Dentistry 3 4%
Engineering 2 3%
Other 6 9%
Unknown 10 15%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 September 2012.
All research outputs
#13,293,124
of 22,678,224 outputs
Outputs from Frontiers in Molecular Neuroscience
#1,273
of 2,826 outputs
Outputs of similar age
#146,306
of 244,101 outputs
Outputs of similar age from Frontiers in Molecular Neuroscience
#20
of 48 outputs
Altmetric has tracked 22,678,224 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,826 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one has gotten more attention than average, scoring higher than 53% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 244,101 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 48 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 58% of its contemporaries.