↓ Skip to main content

PD-L1 Is Not Constitutively Expressed on Tasmanian Devil Facial Tumor Cells but Is Strongly Upregulated in Response to IFN-γ and Can Be Expressed in the Tumor Microenvironment

Overview of attention for article published in Frontiers in immunology, December 2016
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (96th percentile)
  • High Attention Score compared to outputs of the same age and source (98th percentile)

Mentioned by

news
8 news outlets
twitter
10 X users
facebook
1 Facebook page
wikipedia
1 Wikipedia page

Citations

dimensions_citation
43 Dimensions

Readers on

mendeley
50 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
PD-L1 Is Not Constitutively Expressed on Tasmanian Devil Facial Tumor Cells but Is Strongly Upregulated in Response to IFN-γ and Can Be Expressed in the Tumor Microenvironment
Published in
Frontiers in immunology, December 2016
DOI 10.3389/fimmu.2016.00581
Pubmed ID
Authors

Andrew S. Flies, A. Bruce Lyons, Lynn M. Corcoran, Anthony T. Papenfuss, James M. Murphy, Graeme W. Knowles, Gregory M. Woods, John D. Hayball

Abstract

The devil facial tumor disease (DFTD) is caused by clonal transmissible cancers that have led to a catastrophic decline in the wild Tasmanian devil (Sarcophilus harrisii) population. The first transmissible tumor, now termed devil facial tumor 1 (DFT1), was first discovered in 1996 and has been continually transmitted to new hosts for at least 20 years. In 2015, a second transmissible cancer [devil facial tumor 2 (DFT2)] was discovered in wild devils, and the DFT2 is genetically distinct and independent from the DFT1. Despite the estimated 136,559 base pair substitutions and 14,647 insertions/deletions in the DFT1 genome as compared to two normal devil reference genomes, the allograft tumors are not rejected by the host immune system. Additionally, genome sequencing of two sub-strains of DFT1 detected greater than 15,000 single-base substitutions that were found in only one of the DFT1 sub-strains, demonstrating the transmissible tumors are evolving and that generation of neoantigens is likely ongoing. Recent evidence in human clinical trials suggests that blocking PD-1:PD-L1 interactions promotes antitumor immune responses and is most effective in cancers with a high number of mutations. We hypothesized that DFTD cells could exploit the PD-1:PD-L1 inhibitory pathway to evade antitumor immune responses. We developed recombinant proteins and monoclonal antibodies (mAbs) to provide the first demonstration that PD-1 binds to both PD-L1 and PD-L2 in a non-placental mammal and show that PD-L1 is upregulated in DFTD cells in response to IFN-γ. Immunohistochemistry showed that PD-L1 is rarely expressed in primary tumor masses, but low numbers of PD-L1(+) non-tumor cells were detected in the microenvironment of several metastatic tumors. Importantly, in vitro testing suggests that PD-1 binding to PD-L1 and PD-L2 can be blocked by mAbs, which could be critical to understanding how the DFT allografts evade the immune system.

X Demographics

X Demographics

The data shown below were collected from the profiles of 10 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 50 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Japan 1 2%
Unknown 49 98%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 11 22%
Student > Ph. D. Student 6 12%
Student > Doctoral Student 4 8%
Researcher 4 8%
Student > Postgraduate 4 8%
Other 8 16%
Unknown 13 26%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 11 22%
Immunology and Microbiology 9 18%
Agricultural and Biological Sciences 7 14%
Veterinary Science and Veterinary Medicine 3 6%
Medicine and Dentistry 3 6%
Other 3 6%
Unknown 14 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 67. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 July 2020.
All research outputs
#659,788
of 26,086,865 outputs
Outputs from Frontiers in immunology
#592
of 32,836 outputs
Outputs of similar age
#13,155
of 424,229 outputs
Outputs of similar age from Frontiers in immunology
#4
of 263 outputs
Altmetric has tracked 26,086,865 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 97th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 32,836 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.4. This one has done particularly well, scoring higher than 98% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 424,229 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 96% of its contemporaries.
We're also able to compare this research output to 263 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 98% of its contemporaries.