↓ Skip to main content

Decontamination of Minimally-Processed Fresh Lettuce Using Reuterin Produced by Lactobacillus reuteri

Overview of attention for article published in Frontiers in Microbiology, July 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (80th percentile)
  • High Attention Score compared to outputs of the same age and source (84th percentile)

Mentioned by

policy
2 policy sources
twitter
6 X users

Citations

dimensions_citation
31 Dimensions

Readers on

mendeley
62 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Decontamination of Minimally-Processed Fresh Lettuce Using Reuterin Produced by Lactobacillus reuteri
Published in
Frontiers in Microbiology, July 2018
DOI 10.3389/fmicb.2018.01421
Pubmed ID
Authors

Paul T. Asare, Anna Greppi, Martina Stettler, Clarissa Schwab, Marc J. A. Stevens, Christophe Lacroix

Abstract

Over the last years the demand for pre-washed, fresh-cut, and minimally-processed (MP) produce has increased. MP fresh vegetable are rapidly spoiled, whereas there is consumers' concern about chemical disinfection treatments such as with chlorine. A promising antimicrobial is reuterin, a broad-spectrum-antimicrobial compound produced by food-grade Lactobacillus reuteri from glycerol. In aqueous solution, reuterin is a dynamic system consisting of 3-hydroxypropionaldehyde (3-HPA), its hydrate, its dimer as well as acrolein, which was recently identified as the main antimicrobial component of the system. Here, we tested the use of reuterin containing similar 3-HPA levels but different acrolein concentrations for decontaminating and preserving fresh-cut lettuce. Crude reuterin (CR) was produced by biotransformation of 600 mM glycerol using L. reuteri DSM 20016T. CR preparations were further incubated for 16 h at 50°C to produce enhanced reuterin (ER) with raised concentration of acrolein. Fresh-cut iceberg lettuce (Lactuca sativa) was washed using CR (1.5-1.9 mM acrolein) and ER (7.2-21.9 mM acrolein) solutions at 4°C, or sodium hypochloride (250 mg/L) and tap water, and compared with unwashed lettuce. Washed lettuce samples were packed under modified atmosphere (2% O2, 5% CO2, and 93% N2) and stored for 13 days at 4°C. Application of ER containing 12.1, 20.9, or 21.9 mM acrolein reduced the initial viable plate counts of Enterobacteriaceae (by 2.1-2.8 log CFU/g), and yeasts and molds (by 1.3-2.0 log CFU/g) when compared with unwashed samples. In contrast, reuterin solutions containing 7.2 mM acrolein, sodium hypochlorite and tap water only showed very limited and transient, or no effects on the cell loads of lettuce after washing and during storage. Visual assessment of leaves washed with ER showed acrolein concentration-dependent discoloration noticeable already after 3 days of storage for the highest acrolein concentrations. Discoloration became severe for all ER treatments after 7 days, while the other treatments preserved the aspect of washed lettuce. Our data show the predominant role of acrolein as the main antimicrobial component of the reuterin system for food biopreservation. Reuterin preparations with enhanced acrolein concentration of 12.1 mM and higher were effective to reduce plate counts of Enterobacteriaceae and yeasts and molds washed lettuce until day 7 but induced pronounced discoloration of lettuce.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 62 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 62 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 16%
Researcher 6 10%
Student > Bachelor 5 8%
Lecturer 5 8%
Student > Doctoral Student 4 6%
Other 11 18%
Unknown 21 34%
Readers by discipline Count As %
Agricultural and Biological Sciences 18 29%
Biochemistry, Genetics and Molecular Biology 7 11%
Engineering 4 6%
Environmental Science 3 5%
Immunology and Microbiology 3 5%
Other 5 8%
Unknown 22 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 11. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 October 2023.
All research outputs
#3,365,819
of 25,287,709 outputs
Outputs from Frontiers in Microbiology
#3,050
of 29,031 outputs
Outputs of similar age
#63,580
of 334,630 outputs
Outputs of similar age from Frontiers in Microbiology
#111
of 719 outputs
Altmetric has tracked 25,287,709 research outputs across all sources so far. Compared to these this one has done well and is in the 86th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 29,031 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.5. This one has done well, scoring higher than 89% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 334,630 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 80% of its contemporaries.
We're also able to compare this research output to 719 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 84% of its contemporaries.