↓ Skip to main content

The potential roles of T-type Ca2+ channels in motor coordination

Overview of attention for article published in Frontiers in Neural Circuits, January 2013
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
15 Dimensions

Readers on

mendeley
8 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The potential roles of T-type Ca2+ channels in motor coordination
Published in
Frontiers in Neural Circuits, January 2013
DOI 10.3389/fncir.2013.00172
Pubmed ID
Authors

Young-Gyun Park, Jeongjin Kim, Daesoo Kim

Abstract

Specific behavioral patterns are expressed by complex combinations of muscle coordination. Tremors are simple behavioral patterns and are the focus of studies investigating motor coordination mechanisms in the brain. T-type Ca(2+) channels mediate intrinsic neuronal oscillations and rhythmic burst spiking, and facilitate the generation of tremor rhythms in motor circuits. Despite substantial evidence that T-type Ca(2+) channels mediate pathological tremors, their roles in physiological motor coordination and behavior remain unknown. Here, we review recent progress in understanding the roles that T-type Ca(2+) channels play under pathological conditions, and discuss the potential relevance of these channels in mediating physiological motor coordination.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 8 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 13%
Unknown 7 88%

Demographic breakdown

Readers by professional status Count As %
Other 1 13%
Student > Doctoral Student 1 13%
Student > Bachelor 1 13%
Professor 1 13%
Student > Ph. D. Student 1 13%
Other 2 25%
Unknown 1 13%
Readers by discipline Count As %
Medicine and Dentistry 3 38%
Neuroscience 3 38%
Pharmacology, Toxicology and Pharmaceutical Science 1 13%
Unknown 1 13%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 November 2013.
All research outputs
#18,353,475
of 22,729,647 outputs
Outputs from Frontiers in Neural Circuits
#932
of 1,210 outputs
Outputs of similar age
#218,076
of 280,769 outputs
Outputs of similar age from Frontiers in Neural Circuits
#119
of 173 outputs
Altmetric has tracked 22,729,647 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,210 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.8. This one is in the 15th percentile – i.e., 15% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 280,769 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 11th percentile – i.e., 11% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 173 others from the same source and published within six weeks on either side of this one. This one is in the 21st percentile – i.e., 21% of its contemporaries scored the same or lower than it.