↓ Skip to main content

Differential Impact of Visuospatial Working Memory on Rule-based and Information-integration Category Learning

Overview of attention for article published in Frontiers in Psychology, April 2017
Altmetric Badge

Mentioned by

twitter
2 X users
facebook
1 Facebook page

Citations

dimensions_citation
3 Dimensions

Readers on

mendeley
20 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Differential Impact of Visuospatial Working Memory on Rule-based and Information-integration Category Learning
Published in
Frontiers in Psychology, April 2017
DOI 10.3389/fpsyg.2017.00530
Pubmed ID
Authors

Qiang Xing, Hailong Sun

Abstract

Previous studies have indicated that the category learning system is a mechanism with multiple processing systems, and that working memory has different effects on category learning. But how does visuospatial working memory affect perceptual category learning? As there is no definite answer to this question, we conducted three experiments. In Experiment 1, the dual-task paradigm with sequential presentation was adopted to investigate the influence of visuospatial working memory on rule-based and information-integration category learning. The results showed that visuospatial working memory interferes with rule-based but not information-integration category learning. In Experiment 2, the dual-task paradigm with simultaneous presentation was used, in which the categorization task was integrated into the visuospatial working memory task. The results indicated that visuospatial working memory affects information-integration category learning but not rule-based category learning. In Experiment 3, the dual-task paradigm with simultaneous presentation was employed, in which visuospatial working memory was integrated into the category learning task. The results revealed that visuospatial working memory interferes with both rule-based and information-integration category learning. Through these three experiments, we found that, regarding the rule-based category learning, working memory load is the main mechanism by which visuospatial working memory influences the discovery of the category rules. In addition, regarding the information-integration category learning, visual resources mainly operates on the category representation.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 20 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 20 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 25%
Researcher 2 10%
Student > Bachelor 1 5%
Student > Master 1 5%
Student > Postgraduate 1 5%
Other 0 0%
Unknown 10 50%
Readers by discipline Count As %
Psychology 7 35%
Arts and Humanities 1 5%
Nursing and Health Professions 1 5%
Sports and Recreations 1 5%
Unknown 10 50%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 April 2017.
All research outputs
#17,884,576
of 22,961,203 outputs
Outputs from Frontiers in Psychology
#20,659
of 30,113 outputs
Outputs of similar age
#221,213
of 309,932 outputs
Outputs of similar age from Frontiers in Psychology
#443
of 556 outputs
Altmetric has tracked 22,961,203 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 30,113 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 12.5. This one is in the 25th percentile – i.e., 25% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 309,932 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 556 others from the same source and published within six weeks on either side of this one. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.